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INTRODUCTION 

In a distributed database system, data are 
often replicated to improve performance 
and availability. By storing copies of shared 
data on processors where they are fre- 
quently accessed, the need for expensive, 
remote read accesses is decreased. By stor- 
ing copies of critical data on processors 
with independent failure modes, the prob- 
ability that at least one copy of the data 
will be accessible increases. In theory, data 
replication makes it possible to provide ar- 
bitrarily high data availability. 

In practice, realizing the benefits of data 
replication is difficult since the correctness 
of data must be maintained. One important 

aspect of correctness with replicated data 
is mutual consistency: All copies of the same 
logical data item must agree on exactly one 
“current value” for the data item. Further- 
more, this value should “make sense” in 
terms of the transactions executed on cop- 
ies of the data item. When communication 
fails between sites containing copies of the 
same logical data item, mutual consistency 
between copies becomes complicated to en- 
sure. The most disruptive of these com- 
munication failures are partition failures, 
which fragment the network into isolated 
subnetworks called partitions. Unless par- 
tition failures are detected and recognized 
by all affected processors, independent and 
uncoordinated updates may be applied to 
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different copies of the data, thereby com- 
promising the correctness of data. Con- 
sider, for example, an airline reservation 
system implemented by a distributed data- 
base that splits into two partitions when 
the communication network fails. If, at the 
time of the failure, all the nodes have one 
seat remaining for PAN AM 537, reserva- 
tions could be made in both partitions. This 
would violate correctness: Who should get 
the last seat? There should not be more 
seats reserved for a flight than physically 
exist on the plane. (Some airlines do 
not implement this constraint and allow 
overbookings.) 

The design of a replicated data manage- 
ment algorithm tolerating partition failures 
is a notoriously hard problem. Typically, 
the cause or extent of a partition failure 

In addition, slow responses from certain 
processors can cause the network to appear 
partitioned even when it is not, further 
complicating the design of a fault-tolerant 
algorithm. 

As far back as 1977, partitioned opera- 
tion was identified as one of the important 
and challenging open issues in distributed 
data management [Rothnie and Goodman 
19771. Since then our understanding of the 
problem has increased dramatically, and a 
number of diverse solutions have been pro- 
posed. In this paper, we survey several of 
the more general solutions, and discuss cur- 
rent research trends in this still young and 
active research area. 

Although our discussion is couched 
within a database context, most results 
have more general applications. In fact, the 
only essential notion in many cases is that 
of a transaction. Hence these strategies are 
immediately applicable to mail systems, 
calendar systems, object-oriented systems, 
and other applications using transactions 
as their underlying model of processing. 

The remaining sections of the survey are 
organized as follows. Section 1 is a discus- 
sion of the principal consideration in 
designing a processing strategy for a 
partitioned system: the trade-off between 
correctness and availability. In Section 2 
the notion of correctness in a replicated 
database system is discussed, and a taxon- 
omy of partition-processing algorithms is 
introduced. Sections 3 and 4 are surveys of 
the current solutions for transaction pro- 
cessing while the system is partitioned, and 
extensions and combinations are suggested. 
A somewhat different problem is discussed 
in Section 5: how to complete transactions 
that are in progress at the time of a parti- 
tion failure. Guidelines for selecting a par- 
tition strategy are presented in Section 6, 
along with suggestions for future research. 

cannot be discerned by - the processors 
themselves. At best. a Drocessor mav be 1. CORRECTNESS VERSUS AVAILABILITY 

able to identify the &he> processors ih its When designing a system that will operate 
partition; but, for the processors outside of when it is partitioned, the competing goals 
its partition, it will not be able to distin- of availability (the system’s normal func- 
guish between the case in which those pro- tion should be disrupted as little as possi- 
cessors are simply isolated from it and the ble) and correctness (data must be correct 
case in which those processors are down. when recovery is complete) must somehow 
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be met. These goals are not independent; 
hence trade-offs are involved. 

Correctness can be achieved simply by 
suspending operation in all but one of the 
partition groups and forwarding updates at 
recovery; but this severely compromises 
availability. In applications in which par- 
titions either occur frequently or occur 
when access to the data is imperative, this 
solution is not acceptable. For example, in 
the airline reservation system it may be too 
expensive to have a high-connectivity net- 
work, and partitions may occasionally oc- 
cur. Many transactions are executed each 
second (TWA’s centralized reservations 
system estimates 170 transactions per sec- 
ond at peak time [Gifford and Spector 
1984]), and each transaction that is not 
executed may represent the loss of a cus- 
tomer. In a military command and control 
application, a partition can occur because 
of an enemy attack, and it is precisely at 
this time that we do not want transaction 
processing halted. 

On the other hand, availability can be 
achieved simply by allowing all nodes to 
process transactions “as usual” (note that 
transactions can only execute if the data 
that they reference are accessible). Correct- 
ness may now be compromised, however. 
Transactions may produce “incorrect” re- 
sults (e.g., reserving more seats than phys- 
ically available), and the databases in each 
group may diverge. In some applications, 
such “incorrect” results may be acceptable 
in light of the higher availability achieved. 
When partitions are reconnected, the 
problems may be corrected by executing 
transactions missed by a partition, and by 
choosing certain transactions to “undo.” If 
the chosen transactions have had no real- 
world effects, they can be undone by using 
standard database recovery methods. If, on 
the other hand, they have had real-world 
effects, then appropriate compensating 
transactions must be run, transactions that 
not only restore the values of the changed 
database items but also issue real-world 
actions to nullify the effects of the chosen 
transactions (e.g., by canceling certain res- 
ervations and sending messages to affected 
users). Alternatively, correcting transac- 
tions can be run, transforming the database 

from an incorrect state to a correct state 
without undoing the effects of any previous 
transactions. For instance, in a banking 
application, the correcting transaction for 
overdrawing a checking account during a 
partitioning would apply an overdraft 
charge. Of course, in some applications in- 
correct results are either unacceptable or 
incorrectable. For example, it may not be 
possible to undo or correct a transaction 
that effectively hands $l,OOO,OOO to a 
customer. 

Since it is clearly impossible to satisfy 
both goals simultaneously, one or both 
must be relaxed to some extent, depending 
on the application’s requirements. Relaxing 
availability is fairly straightforward, you 
simply disallow certain transactions at cer- 
tain sites. Relaxing correctness, on the 
other hand, usually requires extensive 
knowledge about what the information in 
the database represents, how applications 
manipulate the information, and how much 
undoing/correcting/compensating incon- 
sistencies will cost. The first step in choos- 
ing a partition-processing strategy is to 

determine which is more important, 
correctness or availability; the second step 
is to try to understand the trade-offs be- 
tween the two properties for the database 
at hand. 

2. THE NOTION OF CORRECTNESS 

What does correct processing mean in a 
database system? Informally, a database is 
correct if it correctly describes the external 
objects and processes that it is intended to 
model. In theory, such a vague notion of 
correctness could be formalized by a set of 
static constraints on objects and their at- 
tributes, and a set of dynamic constraints 
on how objects can interact and evolve. In 
practice, a complete specification of the 
constraints governing even a small data- 
base is impractical (besides, even if it were 
practical, enforcing the constraints would 
not be). Consequently, database systems 
use a less ambitious, very general notion of 
correctness based on the order of transac- 
tion execution and on a small set of static 
data constraints known as integrity con- 
straints. 

Computing Surveys, Vol. 17, No. 3, September 1985 



344 l S. B. Davidson et al. 

In this section, we examine the notion of 
correctness, beginning informally with ex- 
amples illustrating incorrect behavior, fol- 
lowed by a more formal definition of 
correctness in the traditional database 
system. When referring to the state of the 
database, we use the terms “correct” and 
“consistent” interchangeably. 

2.1 Anomalies 

Consider a banking database that contains 
a checking account and a savings account 
for a certain customer, with a copy of each 
account stored at both site A and site B. 
Suppose that a communication failure iso- 
lates the two sites. Figure 1 shows the result 
of executing a checking withdrawal at A 
(for $100) and two checking withdrawals at 
B (totaling $100). Although the resulting 
copies of the checking account contain the 
same value, we know intuitively that the 
actions of the system are incorrect: The 
account owner extracted $200 from a 
checking account containing only $100. 
The anomaly is caused by conflicting write 
operations issued in parallel by transac- 
tions executing in different partitions. 

Figure 1. An anomaly resulting from concurrent 
write operations on the same data item in separate 
partitions. 

An interesting aspect of this example is 
that in the resulting database all copies are 
mutually consistent;l that is, all copies of a 
data item contain the same value. Thus, 
although it is commonly used as the cor- 
rectness criterion for replicated file systems 
and information databases, such as tele- 
phone directories, mutual consistency is 
not a sufficient condition for correctness in 
a transaction-oriented database system. It 
is also not a necessary condition: Consider 
the example in which A executes the $100 
withdrawal while B does nothing. Although 
the resulting copies of the checking account 
contain different values, the resulting da- 
tabase is correct if the system recognizes 
that the value in A’s copy is the most recent 
one. 

figure shows the result of executing a 
checking withdrawal of $200 at site A, and 
a savings withdrawal of $200 at site B. 
Here, we assume that the semantics of the 
checking withdrawal allow the account to 
be overdrawn as long as the overdraft is 
covered by funds in the savings account 
(i.e., checking + savings 2 0). The seman- 
tics of the savings withdrawal are similar. 
In the execution illustrated, however, these 
semantics are violated: $400 is withdrawn, 
whereas the accounts together contain only 
$300. The anomaly was not caused by con- 
flicting writes (none existed since the 
transactions updated different accounts), 
but instead as a result of the fact that 
accounts are allowed to be read in one 
partition and updated in another. 

Concurrent reads and writes in different 
partitions are not the only sources of incon- 
sistencies in a partitioned system; more will 
be identified shortly. Nor do they always 
cause inconsistencies: For example, if the 
savings withdrawal in Figure 2 is changed 
to a deposit, the intended semantics of the 
database would not be violated. However, 
the above are typical anomalies that can 
occur if conflicting transactions are exe- 
cuted in different partitions. 

A different type of anomaly on the same 
database is illustrated in Figure 2. This 

2.2 Database Model 

A database is a set of logical data items that 
support the basic operations read and write. 
The granularity of these items is not im- 
portant: They could be records, files, rela- 
tions, etc. The state of the database is an 
assignment of values to the logical data 
items. For brevity, logical data items are 

’ This is the narrowest interpretation of several uses 
of the term “mutual consistency” that appear in the 
literature. Some authors use mutual consistency syn- 
onymously with one-copy equivalence (defined in Sec- 
tion 2.2). 

SITE A SITE B 

Checking := Checking - $100 
Checking := Checking - $25 

Checking := Checking - $75 
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SITE B 

m”?“‘i”‘i 

$.m 
If checking+savings>$200 
then savings := savings - $200 

Figure 2. An anomaly resulting from 
concurrent read and write operations in 
different partitions. 

SITE A 

If checking+savings>$200 
then checking := checking - 

subsequently called data items or, more 
simply, items. 

A transaction is a program that issues 
read and write operations on the data items. 
In addition, a transaction may have effects 
that are external to the database, such as 
dispensing money or displaying results on 
a user’s terminal. The items read by a 
transaction constitute its readset; the items 
written constitute its writeset. A read-only 
transaction neither issues write requests 
nor has external effects. Transactions are 
assumed to be correct. More precisely, a 
transaction, when executed alone, trans- 
forms an initially correct database state into 
another correct state [Traiger et al. 19821. 

Transactions interact with one another 
indirectly by reading and writing the same 
data items. Two operations on the same 
item are said to conflict if at least one of 
them is a write. Conflicts are often labeled 
either read-write, write-read, or write- 
write, depending on the types of data 
operations involved and their order of exe- 
cution [Bernstein and Goodman 19811. 
Conflicting operations are significant be- 
cause their order of execution affects the 
final database state. 

A generally accepted notion of correct- 
ness for a database system is that it exe- 
cutes transactions so that they appear to 
users as indivisible, isolated actions on the 
database. This property, referred to as 
atomic execution, is achieved by guarantee- 
ing the following properties: 

(1) The execution of each transaction is 
an “all or nothing”: Either all of the 
transaction’s writes and external oper- 
ations are performed or none are 
performed. (In the former case the 
transaction is said to be committed; in 

the latter case it is said to be aborted.) 
The property is often referred to as 
atomic commitment. 

(2) The execution of several transactions 
concurrently produces the same data- 
base state as some serial execution of 
the same transactions. The execution 
is then said to be serializable. 

The first property is established by the 
commit and recovery algorithms of the 
database system; the second is established 
by the concurrency control algorithm. 

Atomic transaction execution (the con- 
current execution of transactions is serial- 
izable), together with the assumption that 
transactions are correct (a transaction ex- 
ecuted alone transforms an initially correct 
database state into another correct state), 
implies by induction that the execution of 
any set of transactions transforms an ini- 
tially correct database state into a new, 
correct state. Although atomic execution is 
not always necessary to preserve correct- 
ness (as we discuss in Section 4), most real 
database systems implement it as their sole 
criterion of correctness. This is because 
atomic execution is simple (it corresponds 
to users’ intuitive model that transactions 
are processed sequentially) and can be 
enforced by very general mechanisms 
that determine the order of conflicting 
data operations. These mechanisms are 
independent of both the semantics of the 
data being stored and the transactions 
manipulating it. 

Some systems allow additional correct- 
ness criteria to be expressed in the form of 
integrity constraints. Unlike atomicity, 
these are semantic constraints. They may 
range from simple constraints (e.g., the 
balance of checking accounts must be 

Computing Surveys, Vol. 17, No. 3, September 1985 



346 . S. B. Davidson et al. 

nonnegative) to elaborate constraints that 
relate the values of many data items. In 
systems enforcing integrity constraints, a 
transaction is allowed only if its execution 
is atomic and its results satisfy the integrity 
constraints. To simplify the discussion, 
throughout the rest of the paper, we 
assume that integrity constraints are 
checked as part of the normal processing of 
a transaction. 

Notice that we have not specified 
whether we were discussing a centralized 
or a distributed database system; it has not 
been necessary to do so since the defini- 
tions, the properties of transaction process- 
ing, and the correctness criteria are the 
same in both. Of course, the algorithms for 
achieving correct transaction processing 
differ markedly between the two types of 
implementations. 

In a replicated database, the value of each 
logical item x is stored in one or more 
physical data items, which are referred to 
as the copies of x. Each read and write 
operation issued by a transaction on some 
logical data item must be mapped by the 
database system to corresponding opera- 
tions on physical copies. To be correct, the 
mapping must ensure that the concurrent 
execution of transactions on replicated data 
is equivalent to a serial execution on non- 
replicated data, a property known as 
one-copy serializability. The logic that is 
responsible for performing this mapping is 
called the replica control algorithm. 

As a correctness criterion, one-copy se- 
rializability is attractive for the same rea- 
sons that (normal) serializability is: It is 
intuitive, and it can be enforced using 
general-purpose mechanisms that are in- 
dependent of the semantics of the database 
and of the transactions executed. 

The literature on the model and prob- 
lems discussed above is extensive. The 
transaction concept was first introduced by 
Eswaran et al. [ 19761. A single-site recovery 
algorithm is presented by Gray et al. [ 19811. 
Single-site concurrency control algorithms 
are too numerous to list, but three 
influential proposals are two-phase locking 
[Eswaran et al. 19761, timestamp ordering 
[Bernstein and Goodman 19801, and 
optimistic concurrency control [Kung and 

Robinson 19811. The seminal paper on 
serializability theory was written by 
Papadimitriou [ 19791. The enforcement of 
integrity constraints is discussed by 
Blaustein [1981]. The article by Gray 
[1978] contains an in-depth treatment of 
many issues in the implementation of a 
database system. 

For nonpartitioned distributed database 
systems, concurrency control algorithms 
are surveyed by Bernstein and Goodman 
[1981] and Kohler [1981]. Atomic commit- 
ment protocols are discussed by Gray 
[1978], Hammer and Shipman [1980], and 
Skeen [ 1982b]. Replica control algorithms 
are contained in Gifford [1979], Stone- 
braker [ 19791, and Goodman et al. [1983]. 
A good discussion of the requirements for 
maintaining one-copy serializability in the 
presence of failures can be found in Bern- 
stein and Goodman [ 19831. 

2.3 Partitioned Operation 

Let us now consider transaction processing 
in a partitioned network, where the com- 
munication connectivity of the system is 
broken by failures or by anticipated com- 
munication shutdowns. To keep the expo- 
sition simple, let us assume that the 
network is “cleanly” partitioned (that is, 
any two sites in the same partition can 
communicate and any two sites in different 
partitions cannot communicate) and that 
one-copy serializability is the correctness 
criterion. 

When the system is partitioned, each 
partition must determine which transac- 
tions it can execute without violating the 
correctness criteria. Actually, this can be 
thought of as two problems: (1) each par- 
tition must maintain correctness within the 
part of the database stored at the sites 
comprising the partition, and (2) each par- 
tition must make sure that its actions do 
not conflict with the actions of other par- 
titions, so that the database is correct 
across all partitions. 

If we assume that each site in the net- 
work is capable of detecting partition fail- 
ures, then correctness within a partition 
can be maintained by adapting one of the 
standard replica control algorithms for 
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nonpartitioned systems. For example, the 
sites in a partition can implement a write 
operation on a logical object by writing all 
copies in the partition. This, along with a 
standard concurrency control protocol, 
ensures one-copy serializability in the 
partition. 

The really difficult problem is ensuring 
one-copy serializability across partitions. 
As illustrated in Figures 1 and 2, the trans- 
actions in each partition may be one-copy 
serializable, but conflicting operations can 
take place in different partitions. Thus it is 
not sufficient to run a correct replica con- 
trol algorithm in each partition to ensure 
that overall transaction execution is one- 
copy serializable. 

A number of solutions have been pro- 
posed for keeping data globally consistent, 
and most of the remainder of the survey is 
devoted to discussing these solutions. Many 
of these solutions are based on the simple 
observation that a sufficient (but not nec- 
essary) condition for correctness is that no 
two partitions execute conflicting data 
operations. However, not all partition- 
processing solutions use one-copy serializ- 
ability as their correctness criterion, nor do 
all attempt to maintain correctness across 
partitions. We discuss these alternatives in 
Section 2.4. 

In theory, a partition-processing strategy 
is composed of two algorithms: one to en- 
sure correctness across partitions and a 
replica control algorithm to ensure one- 
copy behavior. In practice, many strategies 
are composed of a single algorithm that 
solves both problems. Most “single” algo- 
rithms do not require partitions to be de- 
tected and tolerate more than just “clean” 
network failures. Such algorithms are at- 
tractive for their additional fault tolerance. 
In Sections 3 and 4, we present these 
“single algorithms,” along with “partition 
control” algorithms. In both, however, we 
emphasize the partition control aspect. 

In addition to solving the problem of 
global correctness, a partition-processing 
strategy must solve two problems of a dif- 
ferent sort. First, when the partitioning 
occurs, the database is faced with the prob- 
lem of atomically committing ongoing 
transactions. The complication is that the 

sites executing the transaction may find 
themselves in different partitions, and thus 
unable to communicate a decision as to 
whether to complete the transaction (com- 
mit) or to undo it (abort). Note that the 
problem of atomic commitment in multiple 
partitions does not arise for a transaction 
submitted after the partitioning occurs 
(such a transaction will be executed in only 
one partition) and that this problem arises 
in any partitioned database system whether 
it is replicated or not. 

Second, when partitions are reconnected, 
mutual consistency2 between copies in dif- 
ferent partitions must be reestablished. 
That is, the updates made to a logical data 
object in one partition must be propagated 
to its copies in the other partitions. Con- 
ceptually, this problem can be solved in a 
straightforward manner by extra bookkeep- 
ing whenever the system partitions. For 
example, each update applied in a partition 
can be logged, and this log can be sent to 
other partitions upon reconnection. (Such 
a log may be integrated with the “recovery 
log” that is already kept by many systems.) 
In practice, an efficient solution to this 
problem is likely to be intricate and very 
dependent on the normal recovery mecha- 
nisms employed in the database system. 
For this reason, we do not discuss it further. 

2.4 Classification of Strategies 

Partition-processing strategies can be clas- 
sified along two orthogonal dimensions. 
The first dimension concerns the trade-off 
between consistency and availability; the 
two extremes are pessimistic and optimistic. 
The second dimension concerns the type of 
information used in determining correct- 
ness; the two extremes are syntactic and 
semantic. Thus a strategy can be loosely 
classified as either pessimistic-syntactic, 
optimistic-syntactic, pessimistic-seman- 
tic, or optimistic-semantic. 

Pessimistic strategies prevent inconsist- 
encies by limiting availability. Each parti- 
tion makes worst-case assumptions about 
what other partitions are doing, and 

’ As before, by “mutual consistency” we mean that the 
copies contain the same value. 
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operates under the pessimistic assumption 
that if an inconsistency can occur, it will 
occur. These strategies differ primarily in 
the policy they use to restrict transaction 
processing. Since they ensure consistency, 
it is straightforward to merge the results of 
individual partitions; updates are merely 
propagated from copies in one partition to 
their counterparts in the other partitions 
at reconnection time. 

At the other extreme, optimistic strate- 
gies do not limit availability. Any transac- 
tion may be executed in any partition that 
contains copies of the items read and writ- 
ten by the transaction. Hence, although 
transaction processing within each parti- 
tion is consistent, and no user staying 
within a single partition would detect an 
inconsistency, global inconsistencies may 
be introduced. These strategies operate un- 
der the optimistic assumption that incon- 
sistencies, even if possible, rarely occur. At 
reconnection time, the system must first 
detect inconsistencies and then resolve 
them. 

Optimistic strategies differ primarily in 
how they detect and resolve inconsisten- 
cies. In Section 1 we discussed several 
ways of resolving conflicts. These include 
undoing a set of the transactions that have 
generated no significant external actions, 
running compensating transactions to nul- 
lify the effects of transactions generating 
external actions, and running corrective 
transactions that transform the database 
to a “correct,” but not necessarily serializ- 
able, state. Obviously, the latter approach 
requires finding a suitable correctness cri- 
terion in lieu of one-copy serializability. 

Syntactic approaches use one-copy seri- 
alizability as their sole correctness criterion 
and check serializability by examining 
readsets and writesets of the executed 
transactions. Hence neither the semantics 
of the transactions (i.e., how the items read 
are used to generate the result) nor the 
semantics of the data items themselves are 
used in ascertaining correctness. Syntactic 
approaches are implemented using general- 
purpose concurrency control algorithms 
such as two-phase locking [Eswaran et al. 
19761. 

At the other extreme, semantic ap- 
proaches use either the semantics of the 
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transactions or the semantics of the data- 
base in defining correctness. Although this 
is somewhat of a “catchall” category, there 
are two discernible subcategories. The first 
uses serializability as the correctness cri- 
terion but also uses the semantics of the 
transactions to test serializability. The sec- 
ond abandons serializability altogether and 
defines correctness in terms of the contents 
of the database itself; the correctness cri- 
terion is intended to capture the semantics 
of the data stored in the database. Such 
semantic constraints fall outside of the tra- 
ditional model of transaction processing. 

3. SYNTACTIC APPROACHES 

All approaches in this section use serial- 
izability as the correctness criterion and 
check serializability by comparing trans- 
actions’ readsets and writesets. We assume 
that a correct concurrency-control mecha- 
nism coordinates transaction execution 
within a partition; hence transaction exe- 
cution within a partition is serializable. 

We also assume that, at the time of the 
partitioning, all copies are mutually consis- 
tent and there are no in-progress transac- 
tions. Note that this assumption is not 
realistic and is made to simplify the presen- 
tation. In general, copies of data items may 
not be consistent at partition time because 
some have processed updates of a commit- 
ted transaction whereas others have not. 
How the system resolves these “blocked” 
transactions is discussed in Section 5, 
which deals with atomic commitment. 
Transactions at earlier stages of processing 
can be aborted and rerun in the partition 
containing their site of origin. 

3.1 Optimistic Strategies 

3.7.7 Version Vectors [Parker et al. 19831 

Version vectors were proposed for use in 
the distributed operating system LOCUS 
to detect write-write conflicts between cop- 
ies of files [Popek et al. 19811. Each copy 
of a file f has a version vector associated 
with it that counts the number of updates 
of f originating at each site at which f is 
stored. The vector consists of a sequence of 
n pairs, where n is the number of sites at 
which f is stored; the ith vector entry 



C updates f once. 

CONFLICT: 3>2,0=0, but 04. 
Manual assistance required. 

(Si : vi) counts the number of updates 
to f, Ui , originating at site Si. Conflicts that 
occur when more than one partition up- 
dates the file can be detected by comparing 
version vectors. 

Vector v is said to dominate vector v’ if 
v and v ’ are version vectors for the same 
file and Ui 2 u,! for i = 1, . . . , n. Intuitively, 
if v dominates v’, the copy with vector v 
has seen a superset of the updates seen by 
the copy with vector v’. Two vectors are 
said to conflict if neither dominates. In this 
case, the copies have seen different updates. 
For example, (A: 3, B: 4, C: 2) since 
3 > 2, 4 > 1 and 2 = 2, but (A:3, B:l, 
C:2) and (A:2, B:4, C:2) conflict since 
3 > 2 but 1~ 4. 

When two sites discover that their ver- 
sion vectors for f conflict, an inconsistency 
has been detected. How to resolve the in- 
consistency is left up to the database ad- 
ministrator (DBA). 

Example. Consider the partition graph 
for file f shown in Figure 3. Sites A, B, and 
C initially have the same version off. The 
system then partitions into groups AB and 
C, and A updates f twice. Hence both A and 
B have version vectors of (A : 2, B: 0, C: 0), 
while C is (A : 0, B : 0, C : 0). Site B then 
splits off from site A and joins site C. Since 
C did not update f and B has the current 
version, there is no conflict ((A: 2, B: 0, 
C:O) dominates (A:O, B:O, C:O)), and B’s 
version (and vector) is adopted for the new 
group BCE. During this new partition fail- 
ure, A updates its version off once, making 
group A’s version vector (A : 3, B : 0, C: 0), 
and C updates its version off once, making 
group BC’s version vectors (A: 2, B:O, 
C: 1). When groups A and BC now com- 
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ABC 

A\ 

cA:O, B:O, C:O> 

<A:2, B:O, C:o> A B 
A updates f twice. , \ \ <*:O* B:“, c:o’ 

<A:3, B:O, CO> A B C <A:2, B:O, C:l> Figure 3. Conflict on file f de- 
A mdates f once. \ I NO CONFLICT: B’s version adopted. tected by incomparable version 

vectors. 

bine, there is a conflict and neither of (A : 2, 
B:O, C:l) or (A:3, B:O, C:O) dominates 
the other. 

Version vectors detect write-write con- 
flicts only. Read-write conflicts cannot 
be detected because the files read by a 
transaction are not recorded. Hence the 
approach works well for transactions ac- 
cessing a single file, which are typical in 
many file systems, but not for multifile 
transactions, which are common in data- 
base systems. 

Example. Consider applying version vec- 
tors to the banking example of Figure 1, 
where communication between sites A and 
B fails, as shown in Figure 4. During the 
failure, the transaction executed at A up- 
dates the checking balance based on the 
value of the savings balance; the transac- 
tion executed at B updates the savings bal- 
ance based on the value of the checking 
balance. No conflict will be detected, even 
though the above is clearly not serializable. 

To extend the version vectors algorithm 
so that read-write conflicts are detectable, 
reads and writes of transactions must be 
logged. This leads to an algorithm very 
similar to the Optimistic Protocol pre- 
sented next.3 

3.7.2 The Optimistic Protocol [Davidson 1982, 
19841 

The Optimistic Protocol uses a precedence 
graph to detect inconsistencies. A prece- 
dence graph models the necessary ordering 

3 Historical note. Such an extension was proposed by 
Parker and Ramos (19821. Their conflict detection 
algorithm, however, is incorrect: It does not detect all 
inconsistencies and falsely detects inconsistencies. 
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checking balance savings balance 

<A:l, B:O> A/A B <:;,‘;“,” 

‘AI/ ’ 

<A:O, B:O> A/’ “\‘,“::,“f’n:I> 

‘A,/ ’ 

NO CONFLICT detected NO CONFLICT detected 
A’s version adopted. B’s version adopted. 

<A:l, B:O> <A:O, B: l> 

Figure 4. Incorrect conflict detection using version vectors with multifile 
transactions. 

between transactions, and is used to check 
serializability across partitions. The prece- 
dence graphs are adapted from serialization 
graphs, which are used to check serializa- 
bility within a site [Papadimitriou 19791. 
In the following we assume that the readset 
of a transaction contains its writeset. (The 
reason for this assumption is to avoid cer- 
tain NP-complete problems in checking 
serializability.) 

In order to construct the precedence 
graph, each partition maintains a log, 
which records the order of reads and writes 
on the data items. From this log, the read- 
sets and writesets of the transactions and 
a serialization order on the transactions 
can be deduced. (A serialization order exists 
since, by assumption, transaction execu- 
tion within a partition is serializable.) For 
partition i, let Z’il, Tiz, . . . , Tim be the 
set of transactions, in serialization order, 
executed in i. 

The nodes of the precedence graph rep- 
resent transactions; the edges represent 
interactions between transactions. The 
first step in the construction of the graph 
is to model interactions between transac- 
tions in the same partition. Two types of 
edges (interactions) are identified: 

(4 

(b) 

(Data) Dependency Edges4 (Tij --+ 
Tik). These edges represent the fact 
that one transaction Tik read a value 
produced by another transaction Tij in 
the same partition (WRITESET(Tij) n 
READSET( Tik) # 0, j < 12). 
Precedence Edges (Tij += Tik). These 
edges represent the fact that one trans- 

’ Dependency edges are also called ripple edges [Dav- 
idson 1982, 19841. 

action Tij read a value that was later 
changed by another transaction Tik in 
the same partition (READSET(Tij) n 
WRITESET( Tik) # 0, j < lz). 

A dependency edge from Tij to Tik indicates 
that the output of Tij influenced the exe- 
cution of Tik ; hence the “existence” of Tik 
depends on the “existence” of Tij- The 
meaning of a precedence edge Tij from Tik 
is more subtle: Tik does not influence Tij 
only because Tij executed before it. In this 
case the “existence” of Tik does not depend 
on the existence of Tij. In both cases, an 
edge from Tij to Tik indicates that the order 
of execution of the two transactions is re- 
flected in the resulting database state. Note 
that the graph constructed thus far must 
be acyclic since the orientation of an edge 
is always consistent with the serialization 
order. 

To complete the precedence graph, con- 
flicts between transactions in different par- 
titions must be represented. A new type of 
edge is defined for this purpose: 

(c) Interference Edges (Tij + Tdk, i # 1). 
These edges indicate that Tij read an 
item that is written by Tlk in another 
partition (READSET( Tij) n WRITE- 
SET(TJ # 0). 

The meaning of an interference edge is the 
same as a precedence edge: An interference 
edge from Tij to Tlk indicates that Tij logi- 
cally “executed before” Tlk since it did not 
read the value written by T,k. An interfer- 
ence edge signals a read-write conflict be- 
tween the two transactions. (A write-write 
conflict manifests as a pair of read-write 
conflicts since each transaction’s readset 
contains its writeset.) 
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PARTITION 1 PARTITION 2 

Figure 5. Conflict between transactions executed in 
different partitions detected by cycle in precedence 
graph. 

Example. Suppose that the serial history 
of transactions executed in PI is (Tn , T,z, 
TIa], and that of P2 is {Tzl, Tz]. The 
precedence graph for this execution is given 
in Figure 5, where the readset of a trans- 
action is given above the line and the 
writeset below the line. (Thus, transaction 
T,, reads b, c and writes c.) 

Intuitively, cycles in the precedence 
graph are bad: If T and T’ are in a cycle, 
then the database reflects the results of T 
executing before T’ and of T’ executing 
before T-a contradiction. Conversely, the 
absence of cycles is good: The precedence 
graph for a set of partitions is acyclic if and 
only if the resulting database state is consis- 
tent [Davidson 19841. An acyclic prece- 
dence graph indicates that the transactions 
from both groups can be presented by a 
single serial history, and the last updated 
copy of each data item is the correct value. 
A serialization order for the transactions 
can be obtained by topologically sorting the 
precedence graph. 

Inconsistencies are resolved by rolling 
back (undoing) transactions until the re- 
sulting subgraph is acyclic. When a trans- 
action is rolled back, transactions con- 
nected to it by dependency edges must also 
be rolled back, since these transactions read 
the values produced by the selected trans- 
action. Hence rolling back one transaction 
may precipitate the rolling back of many, a 
problem known as cascading rollbacks. 
Transactions connected to a rolled-back 

transaction by precedence edges are not 
rolled back since they did not read the 
results of the rolled-back transaction. In 
the above example, if T,, is selected, then 
T,, and T13 must also be selected. Simply 
selecting TIa, Tzl, or T22, however, also 
breaks the cycle and involves only one 
transaction. Note that transactions must 
be rolled back in reverse order of execution; 
that is, within each partition, the value of 
a data item that is updated by one or more 
rolled-back transactions from that group 
will be restored to the value read by the 
earliest rolled-back transaction. To merge 
the partitioned databases, the final value 
of each updated data item in each partition 
group can simply be forwarded to the other 
group (a data item cannot be updated by 
both groups after transactions have been 
rolled back, since the resulting precedence 
graph is acyclic). 

Note that the notion of “committing” a 
transaction has been somewhat violated. A 
transaction T is “committed” during a fail- 
ure subject to confirmation at recovery. If 
all actions performed by Tare recoverable, 
rolling back is not a problem; one merely 
replaces the values updated by T with the 
values read by T. However, some unrecov- 
erable actions may also have been per- 
formed. For example, an automatic teller 
may have handed money to a customer, 
results may have been reported to a user, 
or a missile may have been fired. Some 
such actions may be compensated for; that 
is, there could be some T’ that can be 
executed to nullify the effect of T. For 
example, the bank could charge the account 
of the customer who accidentally received 
cash from the automatic teller, or the re- 
porting procedure could inform the user 
that the reported results were inaccurate 
due to system failure (it is hoped that the 
user would have been made aware of this 
possibility from the start). Other actions- 
such as the firing of a missile-may have 
no compensation. Such actions should not 
be permitted during failure since there can 
be no guarantee that the transaction will 
not be rolled back. 

The algorithm used to select which trans- 
actions to roll back should strive to mini- 
mize some cost function, for example, the 
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number of rolled-back transactions, or the 
sum of the weights of the rolled-back trans- 
actions (where the assignment of weights 
can be application dependent). Unfortu- 
nately, minimizing either the number of 
transactions or the sum of their weights is 
an NP-complete problem [Davidson 19841; 
hence heuristics must be used. 

The most promising heuristics use the 
following observation: Breaking all two- 
cycles in a precedence graph tends to break 
almost all cycles. A two-cycle is a cycle 
consisting of two transactions connected 
by a pair of interference edges in opposite 
directions. These cycles tend to represent 
write-write conflicts on data items. Two- 
cycles can be broken optimally by using an 
algorithm requiring time O(N2.81), where N 
is the number of transactions [Davidson 
19821. After the two-cycles have been bro- 
ken, the few remaining cycles can be broken 
by a greedy algorithm, one that repetitively 
selects the lowest-weight transaction in- 
volved in a cycle. Simulation studies have 
shown that such heuristics work very well, 
outperforming all other strategies tested 
[Davidson 19841. 

The performance of the Optimistic Pro- 
tocol is studied by Davidson [ 19821. A prob- 
abilistic model is developed that yields a 
formula for estimating rollback rate given 
the number of transactions, a model of the 
average transaction, and the size of the 
database. Simulation results in the same 
paper yield additional insight into rollback 
rates. These studies indicate that the Op- 
timistic Protocol performs best when 

(1) a small percentage of items are updated 
during the partitioning, and 

(2) few transactions have large writesets. 

Whenever (1) holds, the probability that a 
given transaction will be rolled back de- 
pends more on the size of its writeset than 
its readset. Concerning (2), not only is the 
occasional large transaction more likely to 
conflict with another transaction, but in 
addition its rollback is likely to cause other 
rollbacks. Consequently, the rollback rate 
is quite sensitive to variance in transaction 
size. 

3.2.2 Tokens [Minoura and Wiederhold 19821 

This approach is very similar to that above 
except that the primary copy of an item 
can change for reasons other than site fail- 
ure. Each item has a token associated with 

5 Normally only the lock for a data item must be 
acquired at the primary site: The actual read may be 
performed on any copy once the lock has been granted. 

3.2 Pessimistic Strategies 

The first group of pessimistic strategies, 
primary site (copy), tokens, and voting, 
were initially proposed as distributed con- 
currency-control mechanisms. However, 
they can also be used to prevent conflicts 
between transactions when the network 
partitions. Missing writes is an adaptive 
voting strategy that improves performance 
when there are no failures in the system. 
Accessible copies is an adaptation of a 
“read-one/write-all” protocol. The last 
strategy, designed specifically for parti- 
tioned networks, strives to increase avail- 
ability by exploiting known characteristics 
of the work load. 

3.2.7 Primary Site, Copy [Alsberg and Day 
1976; Stonebraker 19791 

Originally presented as a resilient tech- 
nique for sharing distributed resources, this 
approach suggests that one copy of an item 
be designated the primary copy, and as such 
be responsible for that item’s activity. All 
reads for a data item must be performed at 
the primary site for that data item.5 Up- 
dates are propagated to all copies. In the 
case of a partition failure, only the partition 
containing the primary copy can access the 
data item. Updates are simply forwarded at 
recovery to regain consistency. 

This approach works well only if site 
failures are distinguishable from network 
failures. If this is the case and the primary 
site for a data item fails, a new primary can 
be elected (for a discussion of election pro- 
tocols, see Garcia [1982]). However, if it is 
uncertain whether the primary failed or the 
network failed, the assumption must be 
that the network failed and no new primary 
can be elected. 
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it, permitting the bearer to access the item. 
In the event of a network partition, only 
the group containing the token will be able 
to access the item. 

The major weakness with this scheme 
is that accessibility is lost if the token is 
lost as a result of site or communication 
medium failure. 

3.2.3 Voting [Gifford 19791 

The first voting approach was the majority 
consensus algorithm [Thomas 19791. What 
we now describe is the generalization of 
that algorithm proposed by Gifford [ 19791. 

In this approach, every copy of a repli- 
cated item is assigned some number of 
votes. Every transaction must collect a read 
quorum of r votes to read an item, and a 
write quorum of w votes to write an item. 
Quorums must satisfy two constraints: 

(1) r + w exceeds the total number of votes 
v assigned to the item, and 

(2) w > v/2. 

The first constraint ensures that there is 
a nonnull intersection between every read 
quorum and every write quorum. Any read 
quorum is therefore guaranteed to have a 
current copy of the item. (Version numbers 
are used to identify the most recent copy.) 
In a partitioned system, this constraint 
guarantees that an item cannot be read in 
one partition and written in another. Hence 
read-write conflicts cannot occur between 
partitions. 

The second constraint ensures that two 
writes cannot happen in parallel or, if the 
system is partitioned, that writes cannot 
occur in two different partitions on the 
same data item. Hence write-write con- 
flicts cannot occur between partitions. 

Example. Suppose that sites S, , SZ , and 
S3 all contain copies of items f and g, and 
that a partition PI occurs, isolating S1 and 
Sz from SB , as shown in Figure 6a. Initially, 
f = g = 0, each site has 1 vote for each off 
and g, and r = w = 2 for both f and g. 
During the partitioning, transaction Tl 
wishes to update g on the basis of values 
read for f and g. Although it cannot be 
executed at Ss since it cannot obtain a read 

Figure 6. Correct transaction processing during par- 
titioning using voting. 

quorum for f, or read and write quorums 
for g, it can be executed at S1 , and the new 
value g = 1 is propagated to Sp. 

Now suppose that PI is repaired, and a 
new failure Pz isolates S1 and Ss from Sz, 
as shown in Figure 6b. During’ this new 
failure, transaction Tz wishes to update f 
on the basis of values read for f and g. It 
cannot be executed at SZ since it cannot 
obtain a read quorum for g, or read and 
write quorums for f. It can be executed at 
SB , however. Using the most recent copy of 
g = 1 (obtained by reading copies at both 
S1 and SB and taking the latest version) T2 
computes the new value f = 1 and propa- 
gates the new value to S, . 

Notice that the above example reduces 
to a majority vote since each copy has ex- 
actly one vote and r and w are a simple 
majority [Thomas 19791. 

Varying the weight of a vote can be used 
to reflect the needed accessibility level 
of an item. For example, in a banking 
application, a customer may use certain 
branches more frequently than other 
branches. Suppose that there are 5 
branches of the bank and the customer uses 
branches 1, 2, and 3 with equal frequency, 
but never goes to branches 4 or 5. Assigning 
r = w = 2 and the customer’s account at 
branches 1, 2, and 3 a vote of 1 but 0 
elsewhere would reflect this usage pattern. 

The quorum algorithm differs from those 
previously discussed in two important 
ways. First, by choosing r < v/2, it is pos- 
sible for an item to be read accessible in 
more than one partition, in which case it 
will be write accessible in none. Read ac- 
cessibility can be given a high priority by 
choosing r small. Second, the algorithm 
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does not distinguish among communication 
failures, site failures, or just slow response. 
A serious weakness of the previous schemes 
is that availability is severely compromised 
if a distinction cannot be made. 

A weakness of the quorum scheme is that 
reading an item is fairly expensive. A read 
quorum of copies must be read in this 
scheme, whereas a single copy suffices for 
all other schemes. 

3.2.4 Missing Writes [Eager and Sevcik 19831 

Eager and Sevcik’s algorithm is based on 
the observation that while requiring a quo- 
rum for items in the readset as well as for 
those in the writeset is a sufficient restric- 
tion to guarantee correct or serializable ex- 
ecution during partition failures, it is not 
necessary when there are no failures [Bern- 
stein and Goodman 1983; Eager and Sevcik 
19831. Requiring a readset quorum signifi- 
cantly degrades performance when there 
are no failures, but is necessary to guaran- 
tee correctness when there are failures. 
Thus transactions run in two modes, nor- 
mal and failure. When in normal mode, 
transaction T reads one copy of each data 
item in its readset and updates all copies in 
its writeset. If some copy cannot be up- 
dated, T becomes “aware” of a missing up- 
date, and must run in failure mode. Failure 
mode is very similar to the majority con- 
sensus algorithm alluded to above: Quo- 
rums must now be obtained for each data 
item in the readset and writeset. This 
“missing update information” is then 
passed along to all following transactions 
that need the information, that is, all trans- 
actions connected to T by a path of de- 
pendency and precedence edges originating 
at T. These transactions also become aware 
of missing updates, and must run in failure 
mode. Since T cannot see the future and 
does not know what later transactions will 
be affected, a level of indirection is used: 
Missing update information is posted at 
sites, along with a description of what 

6A quorum can essentially be thought of as the 
“w > v/2” from Condition 2 in Section 3.2.3; it is a set 
of (possibly weighted) votes from sites containing 
copies of the data item such that any two quorums for 
that data item intersect. 

transactions need the information. When 
the failure is repaired, the missing update 
information will eventually be posted at the 
sites that “caused” the missing updates, 
that is, those that did not receive the up- 
dates. The updates then can be applied, 
and postings removed from other sites 
throughout the system. 

The algorithm hinges on the ability to 
recognize “missing writes” and to propagate 
the information to later transactions so 
that cycles in the precedence graph of com- 
mitted transactions are avoided. Note, 
however, that certain transactions may be 
able to execute without restriction even if 
there are partition failures present in the 
system; there is no harm in allowing read- 
only transactions to “run in the past” dur- 
ing a failure, that is, to read an old value of 
a data item, as long as no cycles result in 
the precedence graph of committed trans- 
actions. This ability to run in the past 
allows a site that has become isolated from 
the rest of the network to execute read-only 
transactions even if updates are being per- 
formed on remote copies of the data items 
stored at that site. 

Example. Suppose that there are four 
sites in the system S1, SZ , & , and S, . Sites 
S, , Sp, and S3 contain copies of data item 
a; site S1 , S3, and Sq contain copies of data 
item b. Now suppose that a failure occurs, 
isolating sites S, and Sp from sites & and 
Sq ; transactions Tl, T2, T3 are initiated at 
site Si (in that order), while transaction T4 
is initiated at Sq. The readsets, writesets, 
and precedence graph are depicted in Fig- 
ure 7. (The precedence graph shown is of 
uncommitted transactions since cycles in 
the precedence graph of committed trans- 
actions will obviously be avoided.) 

Ti is unaware of the failure, since it can 
obtain a copy of a and b at S1 ; it can happily 
run in the past. T2 becomes aware of the 
failure when it is unsuccessful at updating 
the copy of a at SB ; it is allowed to commit, 
however, since it can receive a quorum for 
each data item in its readset and writeset 
(assuming that each copy has a weight of 
1). T2 is then required to pass all of its 
missing update information to transactions 
that are incoming nodes for outgoing edges 
from T2, such as T3 in this example. If T3 
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(b) a file containing the values of missing 
updates, to be applied to the appropri- 
ate copies when recovery occurs; 

(c) a file indicating the transaction re- 
starts, aborts, or commits of which the 
site is aware, used to resolve the 
“blocked” transactions alluded to in the 
introduction to Section 3; 

(d) a record of the missing updates that 
have been applied at the site. 

PAFCl’lTION 1 PARTITION 2 

T2: 
o,b 

6 

4 
T,: a,b 

/ 

Figure 7. Potential conflict between transactions in 
different partitions is avoided by requiring transac- 
tions aware of missing updates to collect read and 
write quorums. 

were to successfully commit, it would also 
be required to pass on the missing update 
information. In this example, however, T3 
is not allowed to commit; since it is aware 
of missing updates, it is required to obtain 
a quorum for data items in its readset, 
which it cannot for b. Transaction T4 would 
also not be allowed to commit since al- 
though it can obtain a quorum for b, it finds 
that it cannot update the copy of b at Sz, 
and must then run in failure mode. Since 
it cannot obtain a quorum for a, it cannot 
complete successfully. Thus in this example 
(as well in all others), there are no cycles 
in the precedence graph of committed trans- 
actions. Note that the restriction that T2 
and T4 be rerun in failure mode is neces- 
sary. Suppose that T2 and T4 both read a 
and b, but T2 updated a while T4 updated 
b. If they both executed in normal mode 
and did not switch to failure mode when 
they become aware of missing updates, a 
cycle would result in the precedence graph 
of committed transactions. 

In order to implement this method, re- 
gardless of the concurrency-control mech- 
anism being used, several files must be kept 
at each site. They include 

(a) a file for posted missing updates, with 
indications of which transactions need 
to be informed about the missing up- 
dates; 

Although these files can grow very rapidly 
if the system is active during failures, they 
must only be maintained when failures are 
present in the system, and thus do not 
impact performance in the absence of fail- 
ures. Furthermore, since quorums are only 
required when a transaction is aware of a 
missing update, when there are no failures 
or the transaction is not required to know 
about the failure, reading an item incurs no 
additional overhead. The method is also 
very flexible: It requires no “detection” of 
failure other than the inability to perform 
updates, and no special “global” action or 
temporary cessation of activity to propa- 
gate updates when the failure is repaired. 

3.2.5 Accessible Copies Algorithm [El Abbadi 
et al. 19851 

The Accessible Copies algorithm is based 
on the following intuitive, “read-one/write- 
all” protocol: 

(1) 

(2) 

(3) 

A data item can be read and written 
within a partition only if a majority of 
its copies reside on member sites of the 
partition. In this case, the item is said 
to be accessible. 
A read operation on an accessible data 
item is implemented by reading the 
nearest copy of the item residing on a 
member of the partition. 
A write operation on an accessible 
data item is implemented by writing 
all copies residing on members of the 
partition. 

The first rule of the protocol ensures that 
only one partition may access a given data 
item. The second and third rules ensure 
that the copies of a data item remain con- 
sistent within a partition. 

Computing Surveys, Vol. 17, No. 3, September 1985 



356 l S. B. Davidson et al. 

The above protocol is appealing because 
it is simple and because it implements the 
read operation inexpensively. The protocol 
ensures one-copy serializability in an 
“ideal” network, where partition failures 
are “clean” and sites detect partition fail- 
ures almost instantaneously. Unfortu- 
nately, if either property of the ideal 
network is violated, which sometimes hap- 
pens in any real system, incorrect execu- 
tions can occur. 

The principal idea in the Accessible Cop- 
ies algorithm is the implementation of an 
abstract communication layer on top of the 
real communication network, where the be- 
havior of the new layer approximates that 
of the “ideal” network. A variant of the 
above read-one/write-all protocol can then 
be implemented on top of the abstract 
communication layer. 

The abstract communication layer cre- 
ates and manipulates virtual partitions, 
which are rough analogs of the actual par- 
titions that occur in the real network. A 
virtual partition has three important attri- 
butes. The first is its creation time, which 
is the logical clock time of its creation 
[Lamport 19781. The second is its set of 
potential members, which is the set of sites 
that are allowed to join the partition. The 
third is its set of actual members. The first 
two attributes are static, and are known to 
each member of a virtual partition. The 
third attribute is dynamic, and generally 
will not be known with certainty by any 
site in the virtual partition. 

One important difference between real 
and virtual partitions is that virtual parti- 
tions are created explicitly according to a 
well-defined protocol. Loosely speaking, 
the steps of the creation protocol are as 
follows. First, a group of sites depart from 
their current virtual partitions. (A site can 
depart from its current virtual partition 
unilaterally by setting a local variable.) 
Second, the group of sites collectively de- 
termine the creation time and the potential 
members of the new virtual partition. The 
creation time must be larger than any pre- 
vious creation time, and the set of potential 
members can include only those sites par- 
ticipating in the creation protocol. Last, the 
sites in the group asynchronously become 
actual members of the new virtual partition 

(be setting an appropriate variable). It 
should be remarked that the creation pro- 
tocol given by El Abbadi et al. [1985] 
tolerates additional partition failures 
occurring during its execution. 

Given a correct implementation of the 
abstract communication layer, a variant of 
the simple read-one/write-all protocol can 
be used to control access to data items. The 
variant protocol is obtained by substituting 
the phrase “potential member(s)” of the 
virtual partition for all occurrences of the 
phrase “member(s) of the partition” in the 
original protocol. The resulting protocol 
provides one-copy serializability when used 
in conjunction with an appropriate failure 
recovery protocol. 

3.2.6 Class Conflict Analysis [ Skeen and 
Wright 1984; Wright 19831 

The pessimistic strategies discussed thus 
far strive to make each data record avail- 
able for reading and writing in some 
partition by arbitrary transactions. These 
strategies, then, emphasize the general 
availability of individual records. An alter- 
nate strategy, class conflict analysis, strives 
to ensure the capability of performing im- 
portant high-level operations on the data. 
Hence this strategy emphasizes the availa- 
bility of high-level data operations, possibly 
at the expense of the general availability of 
records. 

To illustrate the difference between the 
two approaches, consider again the banking 
example shown in Figure 2, where a cus- 
tomer can overdraw his or her checking 
account as long as the overdraft is covered 
by funds in his or her savings account. If 
the system partitions, none of the discussed 
pessimistic strategies would allow a check- 
ing withdrawal (which requires reading the 
balance of both accounts) to occur in one 
partition and allow a savings deposit to 
occur in another partition. However, exe- 
cuting these transactions in parallel in 
different partitions violates neither the 
bank’s policy nor the one-copy serializ- 
ability. Hence these transactions should 
be allowed. 

The class conflict analysis approach as- 
sumes that transactions are divided into 
classes as proposed in SDD-1 [Bernstein et 
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al. 19801. A class may be a well-defined 
transaction type, such as the “savings with- 
drawal,” or it may be syntactically defined, 
for example, the class containing all trans- 
actions reading and writing a subset of 
items a, b, and c. 

Like transactions, classes are character- 
ized by their readsets and writesets. The 
readset of a class is the union of the read- 
sets of all of its member transactions; sim- 
ilarly, the writeset of a class is the union of 
the writesets of all its member transactions. 
As before, it is assumed that a class’s read- 
set contains its writeset, so that NP-com- 
plete problems are avoided. Two classes 
conflict if one’s readset intersects the oth- 
er’s writeset. A class conflict indicates a 
potential read-write conflict between mem- 
ber transactions of the classes. (A conflict 
may not actually occur because the trans- 
actions’ readsets and writesets may be 
proper subsets of the classes’ readsets and 
writesets.) 

When a failure occurs, each partition 
group must decide what classes of transac- 
tions it will execute so as to avoid potential 
conflicts with transactions executed in 
other partitions. As a first step, it must 
decide what classes are “assigned” to its 
partition as well as those that are assigned 
to the other partitions. For example, if 
classes are executable at specific sites, the 
classes assigned to a partition would be 
those executable at sites within the parti- 
tion. Note that classes may be assigned 
to more than one partition, and there may 
be conflicts between classes in different 
partitions. 

The second step for each partition is to 
analyze the assignment and discover the 
class conflicts that can lead to nonserializ- 
able executions. The analysis uses a graph 
model similar to the precedence graph used 
in the Optimistic Protocol, except that 
where precedence graphs give the actual 
orderings between conflicting transactions, 
class conflict graphs give all potential or- 
derings between conflicting classes. A sim- 
plified version of the model is defined 
below. 

A node of the class conflict graph rep- 
resents the occurrence of a given class 
in a given partition. Edges are drawn be- 
tween occurrences of conflicting classes 
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PARTITION 1 PARTITION 2 

Figure 8. Potential conflict indicated by multiparti- 
tion cycles in class conflict graph. 

according to the rules given below. Let Ci 
and Cj be classes such that READSET 
n WRITESET is not empty. 

(1) If Cj and Cj are in the same partition, 
then a pair of edges pointing in opposite 
directions connects them. 

(2) If Ci and Cj are in different partitions, 
then a directed edge extends from Ci 
t0 Cj. 

The direction of the edges indicates the 
possible logical orderings of transactions 
from conflicting classes. In particular, in 
the case of classes Ci and Cj in Rule (2), the 
transactions of Ci cannot logically succeed 
those of Cj because Ci’S transactions cannot 
read the updates of Cj’s transactions. 
Therefore the only order possible is that all 
transactions of Ci precede all transactions 
of Cj, as indicated by the single directed 
edge. 

Example. Figure 8 is a class conflict 
graph for the banking example for two par- 
titions. Boxes denote classes. Readsets are 
shown above the line, and writesets, below. 
Data items s, c, and i are the savings ac- 
count, the checking account, and the inter- 
est rate, respectively. Classes Cd and C, 
include the savings deposit transactions 
and checking withdrawal transactions dis- 
cussed in Section 1. Class Ci transactions 
change the interest rate, class C, transac- 
tions add an interest payment to the 
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savings account, and class C, transactions 
are read only. 

The third step in the analysis is to 
identify those assignments that could lead 
to nonserializable executions. Cycles play a 
key role here, but not all cycles are bad. 
Among class occurrences in the same 
partition, cycles are both common and 
harmless, since the concurrency control 
algorithm operating in the partition will 
prevent nonserializable executions. On the 
other hand, cycles spanning multiple (>l) 
partitions are not harmless, since there is 
no mechanism preventing them in an exe- 
cution. Hence multipartition cycles indicate 
the potential for nonserializable executions. 
In the example, if transactions from classes 
Ci, C,, and C, execute in that order in 
partition 1 and a transaction from CS exe- 
cutes in partition 2, the result is serializa- 
ble. (This can be checked by constructing 
the precedence graph for the execution.) 

Whenever the preliminary class assign- 
ment yields a (multipartition) cyclic graph, 
further constraints on transaction process- 
ing must be imposed. The most straightfor- 
ward approach is to delete classes from 
partitions until the class conflict graph is 
rendered multipartition acyclic. In the 
above example, one of Ci, C,, CL, or C, 
must be deleted. For availability reasons, it 
is desirable to delete a minimum set of 
classes. Not surprisingly, this is an NP- 
complete problem. 

Although this discussion has assumed 
that the complete state of the network is 
known to all partitions, this assumption is 
not required in applying class conflict anal- 
ysis. Wright discusses some modifications 
to the basic algorithm that work with in- 
complete knowledge of the network status 
and some refinements that afford more 
availability than the analysis presented 
here [Wright 19831. 

3.3 Discussion 

3.3.1 Optimistic versus Pessimistic 

An appropriate cost model is one basis 
for comparing the two approaches. The 
model should include oveyhead, the cost 

of repairing inconsistencies, and the cost 
of lost opportunities. In the following, 
costs common to all approaches, such as 
the propagation of updated values, are 
omitted. 

Optimistic policies have two sources of 
overhead. The first is the log, which must 
be maintained while the system is parti- 
tioned, recording the readset and writeset 
of each transaction in order to construct 
the precedence graph, and recording suffi- 
cient information to roll back transactions. 
Many database systems already maintain a 
log, called an undo log, for rolling back 
transactions in case of site failures or trans- 
action failures (e.g., deadlocks) [Gray et al. 
19811. This same log can be used to roll 
back conflicting transactions in a parti- 
tioned system. In order to construct the 
graph, however, undo logs must be aug- 
mented with records of transactions’ read- 
sets (which are normally not recorded since 
they are not needed to roll back a single 
transaction). This increases the complexity 
of the logging algorithms, but it does not 
significantly increase the cost of logging in 
most systems. 

The second and most significant source 
of overhead in optimistic strategies is the 
conflict detection algorithm, which con- 
structs the graph, checks the graph for cy- 
cles, and then selects transactions to roll 
back. Graph construction requires a single 
pass over the entire log, which can be quite 
expensive for a partition of long duration. 
The selection algorithm can be made arbi- 
trarily expensive, depending on the quality 
of heuristics used. As mentioned in the 
description of the Optimistic Protocol, the 
best heuristics require time O(N”.8’), where 
N is the number of transactions. However, 
linear time heuristics often yield acceptable 
solutions. 

The cost of repair in an optimistic ap- 
proach is simply the rollback rate times the 
cost of rolling back a transaction. We have 
already discussed rollback rate. The roll- 
back cost is often a significant fraction of 
the transaction’s execution cost, and may, 
in fact, exceed the execution cost if the 
transaction has external side effects (e.g., a 
customer may be entitled to compensa- 
tion if his or her reservation is canceled, 
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or a series of transactions may need to be 
executed to compensate for a single rolled- 
back transaction). Consequently, the roll- 
back rate must be kept reasonably small 
(certainly less than 20 percent) if 
optimistic approaches are to be cost 
effective. 

The goal of optimistic approaches is to 
minimize lost opportunity, the cost associ- 
ated with needlessly delaying a transaction. 
These costs can be substantial when user 
satisfaction is important as, for example, 
in a banking application. Lost opportu- 
nities still occur in these approaches 
because of the allocation of resources to 
transactions that are destined to be rolled 
back. Such transactions may displace valid 
transactions during the partitioning, and 
rolling them back may cause further delays 
after the partitions are reconnected. Still, 
for most applications, we speculate that 
other costs dominate. 

Pessimistic approaches have no repair 
costs and, except for class conflict analysis, 
almost no overhead. Even in class conflict 
analysis, the overhead is likely to be sub- 
stantially less than in an optimistic strat- 
egy, because although conflict analysis and 
conflict detection are procedurally similar, 
the number of predeclared classes in con- 
flict analysis is likely to be substantially 
less than the number of transactions in 
conflict detection. 

The major cost of a pessimistic approach 
is, of course, the cost of lost opportunities. 
Included in this cost are not only opportu- 
nities lost to real partitioning but also op- 
portunities lost to “apparent” partitionings, 
for example, site failures that are indistin- 
guishable from real partitionings. In many 
systems, apparent partitionings occur more 
frequently than real partitionings; there- 
fore they must be included in any cost 
analysis. 

In summary, the cost of an optimistic 
strategy is the overhead of conflict detec- 
tion plus the repair cost, whereas the cost 
of a pessimistic strategy is the cost of op- 
portunities lost to real and apparent parti- 
tionings. Unfortunately, except for repair 
costs, informed estimates for these costs 
are not easily obtained. No one has meas- 
ured the overhead associated with any of 

the strategies, and the cost of lost op- 
portunities is hard to quantify (although 
one component in a pessimistic strategy is 
the cost of underutilization of processing 
resources). 

3.3.2 Combining Strategies 

Instead of using one strategy during a par- 
titioning, strategies can be combined ver- 
tically over time; the system could start out 
using one strategy and switch to another as 
circumstances dictate. For example, the 
number of transactions rolled back in the 
Optimistic Protocol has been observed to 
increase roughly quadratically with time. 
In fact, the expected number of transac- 
tions rolled back can be estimated with a 
formula involving the number of transac- 
tions processed within the partition, the 
number of data items in the database, and 
certain other parameters modeling the type 
of transactions being executed [Davidson 
19821. Since it is usually impossible to pre- 
dict how long a partitioning will last, the 
database administrator could then set a 
ceiling on the rollback rate (say 10 percent) 
and request that the Optimistic Protocol be 
used only until this ceiling were reached. If 
this ceiling was reached, the system could 
switch to a more pessimistic approach, such 
as primary site, for the remainder of the 
failure. Of course, there is no guarantee 
that the subsequent transactions would not 
also be rolled back since they could be 
connected by dependency edges to trans- 
actions that had already executed. These 
transactions would still have to be included 
in the construction of the precedence 
graph, and considered for possible rollback, 
to guarantee serializability. The rollback 
rate, however, would be held at a more 
acceptable level. 

Strategies can also be combined horizon- 
tally over time [Skeen 1982c]. One ap- 
proach is to assign items different levels of 
consistency. Items in level 0 (the highest 
level) are immutable during a partitioning, 
items in level 1 are updated according to a 
pessimistic strategy, and items in level 2 
are updated according to an optimistic 
strategy. Updates to level 1 items are glob- 
ally consistent and guaranteed to persist, 
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whereas updates to level 2 items are consis- 
tent within the partition but may not be 
globally consistent and, hence, are subject 
to rollback. Although a transaction may 
update items in only one level, it may read 
items of the same level and higher. 

Another way to combine approaches hor- 
izontally is to divide transactions, instead 
of items, into groups. For each partition, 
transactions are divided into two groups: 
high-priority transactions that cannot be 
rolled back and low-priority transactions 
that can. Class conflict analysis is used to 
determine a group of high-priority trans- 
actions for each partition. The low-priority 
group for a partition consists of all trans- 
actions not writing an item read by a high- 
priority transaction in the same partition. 
(A low-priority transaction, however, can 
write an item read by a high-priority trans- 
action in a different partition.) When par- 
titions are reconnected, the Optimistic 
Protocol is used to construct a prece- 
dence graph containing all transactions; 
however, only low-priority transactions are 
liable to rollback. (An approach similar to 
this is used by Apers and Weiderhold 
[1984].) 

4. SEMANTIC APPROACHES 

The first three approaches presented in this 
section are optimistic, and illustrate differ- 
ent ways of using semantics to decrease 
conflict. The first approach, log trans- 
formations, uses the standard notion of 
correctness (serializability) but uses the 
semantics of transactions to check serial- 
izability. The second approach, weak con- 
sistency, slightly relaxes the standard 
notion of serializability in order to enrich 
the set of transactions allowed in a parti- 
tioned system, and uses the semantics 
of the application to determine when 
serializability can be relaxed. The third 
approach, Data-Patch, abandons seri- 
alizability altogether, and uses an 
application-specific definition of correct- 
ness instead. The last approach, general 
quorum consensus, is pessimistic. A new 
correctness criterion is defined on the basis 
of an abstract data type definition of data 
items, and type-specific information is used 
to increase the availability of data. 

This section ends with a brief discussion 
of some other proposed ideas for increasing 
availability. 

4.1 Optimistic Strategies 

4.1.7 Log Transformations [Blaustein et al. 
19831 

This approach is similar to the Optimistic 
Protocol. During the partitioning, logs are 
kept of which transactions were executed 
and in what order. After reconnection, a 
rerun log is constructed, which indicates 
what should be reflected as having hap- 
pened during the failure. To achieve this, 
transactions in each group may have to be 
rolled back and rerun. It differs in that 
transactions are predefined, and semantic 
properties of pairs of transactions are de- 
clared to avoid needlessly rolling back and 
rerunning transactions. These properties 
can include commutativity (7’i Tj = Tj Ti) 
and overwriting (Ti Ti = Tj). There is also 
a notion of “absolute time” in each group 
during the failure so that transactions can 
be merged based on the time at which they 
were executed. 

Example. Suppose that during a parti- 
tion, PI has executed Tz , T4, T6 and that 
P2 has executed Tl, T3, T,, where the 
subscripts indicate the absolute timing of 
the transactions. The rerun log would be 
Tl, T,, T3, T4, T5, Ts. If we ignored any 
semantic properties of transactions, merg- 
ing the database at PI would involve rolling 
back transactions T2, T4, T6 and reexecut- 
ing the rerun log. If we assume that rolling 
back transaction T can be achieved by 
running an inverse transaction T-l, then 
the entire merging operation at P, can be 
represented by the rollback log T;l, T;‘, 
T;l, followed by the redo log. Similarly, the 
merge operation at Pz involves executing 
the rollback log TC1, T:l, T;‘, followed by 
the redo log. Let us call the combined roll- 
back, redo log the merge log. 

If we know that Tl commutes with T2, 
then the merge log at PI can be reduced to 

T,?, T;‘, TI , Tc,, T-, , T5, Ts. 

To see that the result of executing PI’s 
merge log is equivalent to the result of 
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executing Tl, T2, T3, T4, T5, Ts in order, 
consider the entire sequence of transac- 
tions executed by PI (i.e., the original exe- 
cution followed by the merge log): 

7’2, T4, T,, Ti?, K’, TI, 7’3, T4, T5, Ts. 

Since T6, T;l and T4, T;’ are equivalent 
to the null transaction, the above is equiv- 
alent to 

7’2, Tl, T3, T4, Ts, Ts. 

By the commutativity of Tl and T2 this is 
equivalent to the desired sequence. 

If in addition we know that Tl and T3 
commute with T4 and T,, and that T6 
overwrites T5, then the P, merge log can be 
further reduced to 

(i.e., after the partition we only have to run 
Tj, T3 without rolling back any transac- 
tions), At P2, this same semantic informa- 
tion only reduces the merge log to 

W, X1, T2, Ts, T4, Ts. 

The process of reducing the size of the 
merge log is called log transformation. The 
process can be automated with the aid of 
a graph formalism, which represents merge 
logs as graphs, and performs each log trans- 
formation as a graph transformation [Blau- 
stein et al. 19831. 

One advantage of log transformations is 
that merge processes at the different sites 
are independent of each other. That is, as 
each site finds out about transactions that 
were executed elsewhere, it can proceed to 
integrate them locally, regardless of what 
the other sites are doing. This idea has been 
used by Sarin et al. [1985] to extend log 
transformations as a general mechanism to 
achieve mutual consistency without guar- 
anteeing serializability; network partitions 
and site failures do not have to be detected 
[Sarin et al. 19851. A total ordering is im- 
posed on updates using timestamps. Each 
site’s data copy is only required to reflect 
the updates seen by the site, executed in 
timestamp order. If an out-of-sequence up- 
date is received (i.e., one whose timestamp 
is less than the timestamp of the most 
recent update seen by the site), log trans- 
formations are used to achieve the correct 

value for the copy. Serializability is not 
guaranteed since the copies read by a trans- 
action may only reflect some incomplete 
subset of updates to the data item. 

This approach may be useful in an envi- 
ronment where failures are common and 
communications unreliable. 

4.7.2 Weak Consistency [Garcia and 
Weiderhold 19821 

Garcia and Weiderhold [1982] argue that 
conventional correctness criteria-in par- 
ticular, serializability-may be stronger 
than needed for many read-only transac- 
tions. Since such transactions do not 
change the database state, their execution 
cannot generate inconsistencies. Relaxing 
the serializability constraint is especially 
attractive for partitioned systems, since it 
would allow a richer mix of read-only trans- 
actions. (The original motivation for a 
weaker correctness criterion was to speed 
up the processing of read-only transactions 
in a distributed system.) Since read-only 
transactions occur frequently in most sys- 
tems, by allowing a richer mix of them one 
can substantially increase the number of 
transactions executed while partitioned. 

Read-only transactions are divided into 
two classes: those requiring strong consist- 
ency and those requiring weak consistency. 
A strongly consistent transaction is pro- 
cessed in the normal fashion: Its execution 
must be serializable with respect to update 
transactions and other strongly consistent 
transactions. A weakly consistent transac- 
tion must see a consistent database state 
(the result of a serializable execution of 
update transactions), but its execution need 
not be serializable with respect to other 
read-only transactions. (Weak serializabil- 
ity is stronger than degree 2 or 1 consist- 
ency as defined by Gray et al. [1976]. 
Specifically, with degree 2 or 1 consist- 
ency, a read-only transaction can obtain 
an inconsistent view of the database.) The 
following example illustrates this. 

Example. Consider again the banking 
database of the first section with sites A 
and B partitioned. The sequence of trans- 
actions given in Figure 9 occurs. Notice that 
the two update transactions, considered 
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SITE A SITE B 
C: checking deposit of D: sauings deposit of 

$50 $100 

Aa : read checking and As : read checking and 
savings accounts savings accounts 

Figure 9. Nonserializable transaction execution al- 
lowed with weakly consistent transactions. 

alone, are serializable. In fact, since they 
access different items, both C ; D and 
D ; C are valid serialization orders. How- 
ever, when the accounting transactions AA 
and As are included, the execution is not 
serir:izable. The database state read by AA 
is pc>ssible only if C executes before D, 
whert?s the state read by As is possible 
only if D executes before C. (Both AA and 
AB see a valid serialization order of the 
updates; the problem is that they see dif- 
ferent orders.) 

If AA and Ae required only weak consist- 
ency, the above execution would be “cor- 
rect”: The update transactions alone are 
serializable, and each weakly consistent 
transaction sees the result of a serializable 
execution of update transactions. 

The use of different consistency levels 
can be integrated with any of the syntactic 
approaches discussed in the previous sec- 
tion. In a pessimistic strategy, a transaction 
requiring only weak consistency can be ex- 
ecuted at any time in any partition, as long 
as the partition contains copies of items 
read by the transaction. The transaction 
will always see a consistent database state 
since all update transactions are guaran- 
teed to be (globally) consistent. In an op- 
timistic strategy, such a transaction sees a 
consistent state only if it does not read the 
result of an update transaction that is even- 
tually rolled back. 

The choice of a consistency level for a 
read-only transaction depends on how the 
information returned by the transaction is 
used. An accounting transaction reporting 
cash flow within a bank probably requires 
strong consistency. Inventory reporting 
and transactions computing summary sta- 
tistics often need only weak consistency. 

Fischer and Michael [1982] give an im- 
portant application of weak serializability 
in their algorithms for directory systems. A 
directory supports only three types of 
transactions: insert a unique item, list all 
items, and delete an item. Mail systems, 
calendar systems, and other familiar appli- 
cations can be cast as directories. Exploit- 
ing the property that the list operation 
requires only weak consistency; they 
give an algorithm allowing unrestricted 
transaction processing in the presence of 
communication failures, including but not 
limited to failures partitioning the system. 

4.7.3 Data-Patch [Garcia et al. 19831 

Data-Patch is a tool that aids the DBA in 
developing a program to automatically in- 
tegrate divergent databases. As in the.%pre- 
vious optimistic strategies, transactions are 
executed “normally” during the failure. At 
reconnection, the final database state is 
constructed according to an integration 
program. Serializability is no longer the 
correctness criterion; rather, the integra- 
tion program defines the “correct” final 
database. This is based on the premise that 
users may already have observed the effects 
of a nonserializable execution; thus restor- 
ing the database to a serializable state may 
not be the most sensible thing to do. For 
example, in an airline reservation system, 
if a flight becomes overbooked, it may not 
be desirable to cancel reservations since a 
promise has been made to customers and 
normal passenger cancellations could take 
care of the problem. 

The major design principle involved 
is identifying image and plan relations. 
Image relations are observable entities 
or relationships, and must reflect that 
in the final database. For example, in a 
database for Girard bank, the relation 
GIRARD(BRANCH, CASH, . . .) might be 
used to record the amount of cash at each 
branch. The value of CASH in each tuple 
at recovery should reflect the actual 
amount of cash at that branch. This might 
be obtained as the latest value for CASH 
in each partition group. Plan relations do 
not represent observable entities, and the 
DBA can therefore have more freedom in 
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selecting the final values. In the next ex- 
ample, ACCOUNT is a plan relation. 

Example 

ACCOUNT (CUSTOMER, BALANCE,. . .) 
DEPOSIT (CUSTOMER, AMOUNT, 

DATE, . . .) 
WITHDRAWAL (CUSTOMER, AMOUNT, 

DATE, . . .) 

DEPOSIT and WITHDRAWAL are rec- 
ords of account activity. If during a parti- 
tion a customer overdraws his or her 
account according to the records from each 
group, he or she may be assessed a penalty 
charge. Thus BALANCE would reflect the 
sum of withdrawals and deposits to the 
account, plus the penalty charge. If, on the 
other hand, a customer is mistakenly as- 
sessed a penalty charge because a DE- 
POSIT did not appear during a failure, the 
penalty charge may be dropped. 

The above example shows that not only 
must a final database state be chosen, but 
corrective actions must also be specified. 
That is, if integrity constraints art violated 
after the image and plan relations have 
been constructed, some sort of compensat- 
ing or corrective action must be issued (e.g., 
a penalty for overdraft, as above). 

The Data-Patch integration program is 
defined through a set of rules that specify 
how the integrated database can be ob- 
tained from two databases that exist after 
a partition. Some rules specify how differ- 
ing facts are to be combined. For example, 
consider a field that represents the location 
of a ship. In this case, the DBA can select 
a “latest value” rule: If the field has a 
different value in each partition, use the 
value with the latest timestamp in the in- 
tegrated database. If the field represents 
the number of reservations for a flight, the 
“arithmetic rule” can be used: The inte- 
grated value is the sum of the two parti- 
tioned values minus the value that existed 
when the partition started. Other rules 
specify the corrective actions to be taken. 
For instance, a rule might specify that if 
the withdrawals exceed the deposits to an 
account (after the integrated database has 

been obtained), then a dunning letter 
should be sent to the customer. 

4.2 Pessimistic Strategies 

4.2.1 General Quorum Consensus [Herlihy 
19841 

As the name suggests, general quorum 
consensus extends the quorum voting al- 
gorithm proposed by Gifford [1979] (see 
Section 3.2). This approach to replicated 
data management uses type information to 
increase data availability. In addition, it 
uses a novel correctness criterion and rep- 
resentation of data items. 

Each data item is viewed as an instance 
of an abstract data type. An abstract data 
type defines the set of operations supported 
by items of that type. For example, a FIFO 
(first-in, first-out) queue defines the oper- 
ations ENQUEUE (append an element to 
the end of the queue) and DEQUEUE (re- 
move an element from the head of the 
queue and return its value). Items of type 
queue can only be accessed (read or written) 
through the ENQUEUE and DEQUEUE 
operations. 

In addition to defining a set of opera- 
tions, an abstract data type defines a 
type-specific correctness criteria. This cor- 
rectness criteria consists of two parts: a 
serial specification and a behaviorial spec- 
ification. The serial specification describes 
the sequences of operations that are al- 
lowed on data items of the given type. In 
the FIFO queue example, a sequence of 
ENQUEUE and DEQUEUE operations is 
allowed only if the number of ENQUEUE 
operations is greater than or equal to the 
number of DEQUEUE operations in any 
prefix of the sequence. This ensures that 
DEQUEUE is never applied to an empty 
queue. The behavioral specification de- 
scribes the conflicts between operations 
that limit concurrency. For example, al- 
though ENQUEUE operations may always 
be performed, DEQUEUE operations con- 
flict with both ENQUEUE operations and 
other DEQUEUE operations since the 
value returned by a DEQUEUE operation 
depends on the contents of the queue. 
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An interesting aspect of Herlihy’s ap- 
proach is that each data item is represented 
by its history, that is, the sequence of op- 
erations that have been applied to the data 
item since its creation. Each operation in 
the history has an associated timestamp 
that serves to uniquely identify the opera- 
tion and determine its position in the his- 
tory. For example, the history for some 
queue Q might contain the following oper- 
ations (with timestamps): 

Q: {(ENQUEUE(3), 10036), (ENQUEUE(7), 
10072), (DEQUEUE( ), 10137), 
(ENQUEUE(5), 10201), (DEQUEUE( ), 
21007), (ENQUEUE(5), 22137)) 

This sequence of operations results in a 
queue containing two elements, both with 
value 5. 

Each copy of an item stores a subse- 
quence, or subhistory, of the item’s entire 
history. A copy’s subhistory is often incom- 
plete owing to failures preventing the 
receipt of certain operations. It is straight- 
forward to merge subhistories of two or 
more copies into a single, more complete 
subhistory, however. In fact, the advan- 
tage of representing items by their his- 
tories over representing items by their 
values is that incomplete subhistories can 
be merged, whereas incomplete values typ- 
ically cannot. 

The basic idea behind the general quo- 
rum consensus algorithm is to associate a 
read quorum and write quorum with each 
operation defined by an abstract type. For 
operation OP, let ROP denote its read quo- 
rum, and Wop denote its write quorum. The 
execution of an operation OP on data item 
D consists of three steps: 

(1) The site executing OP requests subhis- 
tories from at least RoP copies of D. If 
less than ROP copies respond, the op- 
eration cannot be executed. 

(2) The executing site merges the subhis- 
tories received into a more complete 
subhistory. Using this merged subhis- 
tory and the serial specification for the 
type of D, it checks whether OP is 
allowed and computes the value to be 
returned to the user (if any). 

(3) The executing site sends OP to at least 
Wop copies. The copies append OP and 
its timestamp to their subhistories. 

The subhistory constructed in Step (2) may 
be the complete history of the data item, 
but this is not always required. What is 
required is that the constructed subhistory 
contain enough information to determine 
whether OP is allowed and to determine 
the value returned to the user. 

The choice of read and write quorum 
sizes is determined by the behavioral spec- 
ification of the data type. If the behavioral 
specification indicates that operation 01 
can influence either the acceptability or the 
return value of operation 02, then the quo- 
rum sizes must be chosen so that Wo, + 
Ro2 exceeds number of copies of the data 
item. In this case the quorums are said to 
intersect. This constraint ensures that the 
subhistory constructed in Step (2) during 
an execution of operation 02 will contain 
all prior executions of operation 01. 

Example. In the queue example, each 
DEQUEUE and ENQUEUE operation 
influences the value returned by a later 
DEQUEUE operation. Hence the write 
quorums of both ENQUEUE and DE- 
QUEUE must intersect the read quorum of 
DEQUEUE. On the other hand, neither 
ENQUEUE nor DEQUEUE operations in- 
fluence later ENQUEUE operations. Con- 
sequently, the read quorum of ENQUEUE 
need not intersect with any other opera- 
tion’s write quorum. Given this informa- 
tion, one possible assignment of quorums 
for a queue with three copies is 

&~QUEUE = 0, %NQUEUE = 1; 

RDEQUEUE = 3, WDEQ”EUE = 3. 

Note that this assignment allows EN- 
QUEUE operations to occur concurrently 
in different partitions. Other quorum vot- 
ing schemes (namely, Gifford’s) would not 
allow this. 

General quorum consensus is an elabo- 
rate protocol. Many extensions of the 
above basic (and somewhat oversimplified) 
scheme are discussed by Herlihy [1984, 
19851. One particularly interesting exten- 
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sion allows quorums to be reassigned dy- 
namically, according to detected failures 
and recoveries. Recall that a similar tech- 
nique was used in the Missing Writes Pro- 
tocol [Eager and Sevcik 19831. 

4.3 Other Ideas 

Numerous ad hoc techniques for exploiting 
the semantics of an application to increase 
availability have been proposed. Many of 
these can best be illustrated by examples. 

The first example illustrates the idea of 
splitting a data item [Hammer and Ship- 
man 19801. In an airline reservation sys- 
tem, let SEATS represent the number of 
seats available on a particular flight. When 
a partition occurs, PI creates SEAT& con- 
taining 40 percent of the value of SEATS, 
and PB creates SEATS2 containing 60 per- 
cent of the value of SEATS (or other per- 
centages reflecting the relative booking 
rates for that flight). At recovery, 

SEATS = SEATS, + SEATS2 

would restore SEATS to its correct value. 
The second example comes from Incom- 

plete Information Systems [Davidson 1982; 
Lipsky 19791. Suppose that we have a tuple 
representing John Doe’s age as less than 
30. During a partition, PI gathers more 
information and concludes that his age is 
between 20 and 30, while Pz concludes it to 
be between 15 and 25. At recovery, the 
intersection of these ranges, 20 to 25, may 
be taken as John Doe’s age. 

The last example illustrates the use of 
failure-mode integrity constraints. Failure- 
mode integrity constraints are constraints 
that are only checked when the system is 
partitioned. Recall the banking example of 
Figure 2, where overdrafts on the checking 
account were allowed as long as checking 
balance + saving balance 2 0. The example 
described a scenario where this constraint 
was violated during a partitioning. This 
anomaly could have been avoided by en- 
forcing a failure-mode integrity constraint 
disallowing checking account overdrafts 
when the system is partitioned. 

These ideas can be used with a pessimis- 
tic approach such as primary copy to allow 

more transactions to be executed: A portion 
of SEATS would be available in each group, 
although the actual or current value for 
SEATS could not be obtained because of 
possible bookings in the other group. The 
flight would never be overbooked, however, 
if neither group sold more than their allot- 
ment of seats. It can also be used with 
optimistic approaches such as the Optimis- 
tic Protocol and Data-Patch to avoid con- 
flict and possible transaction rollbacks. In 
the Optimistic Protocol, conflicts are 
mainly caused by updates to the same data 
item. By splitting data items and recombin- 
ing at recovery, this can be avoided. In 
Data-Patch, integration becomes easier 
since the value for SEATS can simply be 
computed without canceling reservations. 

5. ATOMIC COMMITMENT 

A transaction on a distributed database 
typically executes at several sites. In order 
to ensure the “all or nothing” property of 
the transaction, the executing sites must 
unanimously agree to commit or to abort 
the transaction. Until now we have as- 
sumed that this agreement, known as 
atomic commitment, can be achieved in a 
partitioned system. Let us now examine 
how reasonable this assumption is. 

Viewed abstractly, in a commitment pro- 
tocol each participant first votes to “ac- 
cept” or “reject” the transaction according 
to its ability to process the transaction and 
then decides whether to commit or abort 
based on the voting. Commitment normally 
requires unanimous acceptance.7 Of course, 
all decisions must agree. 

The two-phase commit protocol is a 
straightforward implementation of the 
above [Gray 19781. In the first phase, a 
designated participant, the coordinator, so- 
licits the votes from its cohorts. In the 
second phase, it decides on the basis of the 
votes and then sends the decision to all 
participants. In the course of the protocol, 
each participant voting “accept” goes 
through three distinct states: an uncommit- 
ted state in which it has not voted, an in 

‘Some protocols for fully replicated databases require 
only acceptance by a majority. 
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doubt state in which it has voted but does 
not know the result of the voting, and a 
decision state in which it knows the com- 
mit/abort decision. (A participant voting 
“reject” does not occupy the in doubt state 
since it knows the eventual outcome.) 

Consider the consequences of a partition- 
ing occurring during the execution of the 
two-phase commit protocol. In each parti- 
tion the participants, acting together, will 
attempt to decide the outcome on the basis 
of their states. If the partition contains the 
coordinator, a decided participant, or an 
uncommitted participant, a consistent de- 
cision can be reached (in the case of an 
uncommitted participant, abort will be cho- 
sen). However, a partition containing only 
in-doubt participants and lacking the co- 
ordinator cannot safely decide: The partic- 
ipants cannot commit since they do not 
know the outcome of the voting, and they 
cannot abort since they may contradict the 
decision of the coordinator. Hence these 
sites must wait until reconnection before 
deciding, and the protocol (and associated 
transaction) is said to be blocked at those 
sites. 

ticipants) will be blocked in the event of a 
partitioning by introducing extra phases 
[Skeen 1982a, 1982b, 19831. Its principal 
advantage is that it is also resilient to site 
failures and (nonpartitioning) communi- 
cation failures. Both protocols have draw- 
backs, however. Although the decentralized 
protocol decreases the probability that a 
partitioning will occur while sites are in the 
in doubt state, it increases the expected 
number of blocked sites if a partitioning 
should occur. The quorum protocol actually 
increases the chance that some site will be 
blocked in the event of a partitioning (al- 
though the expected number of blocked 
sites decreases). 

Given that the two-phase commit proto- 
col occasionally blocks, the interesting 
question then is: Are there any nonblocking 
protocols for partitionings? The answer is 
no: Even under the most favorable, realistic 
partitioning assumptions, there are no non- 
blocking protocols [Skeen 1982b]. The sit- 
uation is even worse if sites can fail during 
a partitioning; in this case there is no pro- 
tocol that guarantees that even a single site 
will be able to decide. 

How the partition strategies discussed in 
Sections 3 and 4 treat blocked transactions 
depends on whether the strategy is pessi- 
mistic or optimistic. In a pessimistic strat- 
egy, the data items at undecided sites must 
be rendered inaccessible until reconnec- 
tion. In an optimistic strategy more flexi- 
bility is possible. A partition can tentatively 
commit or abort a blocked transaction. If 
its decision is inconsistent with other de- 
cisions, it can resolve this in the same way 
that it resolves other inconsistencies, by 
rolling back the offending transaction and 
all dependent transactions. Since rolling 
back is fairly expensive, a tentative decision 
should be made only if it has a high prob- 
ability of being correct. 

6. CONCLUSION 

6.1 Guidelines for Selecting a Partition 
Strategy 

Since it is impossible to eliminate block- Research in distributed databases has been 
ing, it is desirable to minimize it. Several criticized for devising strategies for isolated 
protocols have been proposed that, under problems [Mohan 19801. In particular, con- 
appropriate partitioning assumptions, currency control mechanisms and partition 
block less than the two-phase commit failure protocols are highly interdependent 
protocol. One protocol, the decentralized and should not be considered in isolation 
two-phase commit protocol, reduces the from each other. For example, a voting 
likelihood of blocking by decreasing the partition failure protocol should not be 
time a site spends in the in doubt state used with a primary site concurrency 
[Skeen 1982c]. This is accomplished by control mechanism since the primary site 
having the participants send their votes strategy can already handle partition fail- 
directly to each other, bypassing the coor- ures. (See Davidson [ 19821 for a discussion 
dinator. Another protocol, the quorum com- of the relationship between the Optimistic 
mit protocol, reduces the probability that a Protocol and common forms of concurrency 
large partition (one consisting of many par- control.) It is also important to consider 
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the performance of proposed strategies, al- 
though it is difficult to obtain informed 
estimates on performance trade-offs. In 
some cases this results from the fact that 
an appropriate model is difficult to con- 
struct; in others it results from the fact 
that the mechanism is highly application 
dependent. 

With these cautions in mind, we group 
the factors that influence the choice of a 
strategy into three areas: 

Environment. Included here are the 
properties of the network and the nature of 
the partitionings. An important considera- 
tion is whether partitionings are caused by 
failures or are the result of anticipated 
events. In the latter case, complete infor- 
mation about the characteristics of the par- 
titioning, including duration and network 
topology, may be known, and this can be 
exploited in some strategies (in particular, 
class conflict analysis). 

However, most systems partition because 
of failures, and in this case the robustness 
of the strategy may be an important factor. 
For example, a primary site strategy would 
be a poor choice if site failures cannot be 
distinguished from communication fail- 
ures. Also, class conflict analysis (as pre- 
sented) cannot be used if communication 
failures do not always result in clearly de- 
lineated partitions. 

The duration of the partitioning is also 
important. Long failures tend to generate 
many conflicts between transactions in dif- 
ferent partitions; in this case, a pessimistic 
strategy is a better choice than an optimis- 
tic one. 

Work Load. Two important work-load 
characteristics are average transaction 
length and transaction variance. Optimistic 
policies work better when transactions are 
short and variance small. 

Another important work-load factor is 
locality of reference: Do updates to given 
data items tend to occur at a certain site? 
If so, a primary site strategy will not pro- 
hibit many transactions and availability 
will still be good. The rollback rate in the 
Optimistic Protocol will also be reduced, 
but the transactions will still have to be 
tested for conflict. 

Application Specificity. These factors fall 
into two groups. The first are requirements 
placed by the application on transaction 
processing. Two important questions are 

(1) 

(2) 

Can transaction processing be tempo- 
rarily halted for recovery purposes? If 
not, a pessimistic approach should be 
adopted which merely requires the for- 
warding of updates to merge the data- 
bases. 
Can transaction processing be limited 
in parts of the database, or is availabil- 
ity a premium? If the latter is the case, 
a more optimistic approach should be 
used. 

The second group includes semantic con- 
siderations. Relevant questions here are 

(1) Can transactions be rolled back? That 
is, do they have an inverse? If the latter 
is the case, either conflict should be 
avoided totally, or the divergent data- 
bases should be patched up by using 
compensating actions if necessary to 
achieve correctness. 

(3) 

Is serializability a concern, or is a more 
procedural definition of “correctness” 
in the final database state acceptable? 
If serializability is not a major concern, 
a Data-Patch approach can be used. 
Should a partitioned system be ex- 
pected to behave exactly as an unpar- 
titioned system? For example, even if 
serializability is the “normal” correct- 
ness criterion, under extenuating cir- 
cumstances (such as partition failures) 
a more lenient definition could be used. 

6.2 Future Directions 

Partitioned operation is still very much an 
active research area. We comment briefly 
on several interesting research directions. 

One obvious deficiency in our current 
knowledge of partition strategies is the lack 
of any performance data on how well they 
work. Few strategies have been imple- 
mented and none tested on a representative 
application. Clearly, more experience with 
the proposed strategies is needed before we 
can understand the performance trade-offs 
between them. 
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Another important area of research is the 
adaptation of these strategies to accom- 
modate more general processing models, in 
particular, nested transactions (and the 
related concept of multilevel atomicity 
[Garcia 1983; Lynch 19831). Nested trans- 
actions arise in general purpose distrib- 
uted programming environments such as 
ARGUS [Liskov and Schleifer 19831. 

Algorithms for detecting and analyzing 
network partitions have also not been de- 
veloped. Since several of the strategies re- 
quire that the failure initially be recognized, 
this is an important area to address. 
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