
Consistency in Partitioned Networks

Susan 6. Davidson

Department of Computer and Information Science, University of Pennsylvania, Philadelphia,
Pennsylvania 19104

Hector Garcia-Molina

Department of Computer Science, Princeton University, Princeton, New Jersey 08540

Dale Skeen

IBM Almaden Research Center, San Jose, California 95120

F&ently, several strategies have been proposed for transaction processing in partitioned
distributed database systems with replicated data. These strategies are surveyed in light
of the competing goals of maintaining correctness and achieving high availability.
Extensions and combinations are then discussed, and guidelines are presented for
selecting strategies for particular applications.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]:
Performance of Systems-reliability, availability, and serviceability; D.4.3 [Operating
Systems]: File Systems Management-distributed file systems; H.2.4 [Database
Management]: Systems-distributed systems; transaction processing

General Terms: Performance, Reliability

Additional Key Words and Phrases: Consistency, network partitioning, serializability

INTRODUCTION

In a distributed database system, data are
often replicated to improve performance
and availability. By storing copies of shared
data on processors where they are fre-
quently accessed, the need for expensive,
remote read accesses is decreased. By stor-
ing copies of critical data on processors
with independent failure modes, the prob-
ability that at least one copy of the data
will be accessible increases. In theory, data
replication makes it possible to provide ar-
bitrarily high data availability.

In practice, realizing the benefits of data
replication is difficult since the correctness
of data must be maintained. One important

aspect of correctness with replicated data
is mutual consistency: All copies of the same
logical data item must agree on exactly one
“current value” for the data item. Further-
more, this value should “make sense” in
terms of the transactions executed on cop-
ies of the data item. When communication
fails between sites containing copies of the
same logical data item, mutual consistency
between copies becomes complicated to en-
sure. The most disruptive of these com-
munication failures are partition failures,
which fragment the network into isolated
subnetworks called partitions. Unless par-
tition failures are detected and recognized
by all affected processors, independent and
uncoordinated updates may be applied to

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1985 ACM 0360-0300/85/0900-0341$00.75

Computing Surveys, Vol. 17, No. 3, September 1985

342 . S. B. Davidson et al.

CONTENTS

INTRODUCTION
1. CORRECTNESS VERSUS AVAILABILITY
2. THE NOTION OF CORRECTNESS

2.1 Anomalies
2.2 Database Model
2.3 Partitioned Operation
2.4 Classification of Strategies

3. SYNTACTIC APPROACHES
3.1 Optimistic Strategies
3.2 Pessimistic Strategies
3.3 Discussion

4. SEMANTIC APPROACHES
4.1 Optimistic Strategies
4.2 Pessimistic Strategies
4.3 Other Ideas

5. ATOMIC COMMITMENT
6. CONCLUSION

6.1 Guidelines for Selecting
a Partition Strategy

6.2 Future Directions
ACKNOWLEDGMENTS
REFERENCES

different copies of the data, thereby com-
promising the correctness of data. Con-
sider, for example, an airline reservation
system implemented by a distributed data-
base that splits into two partitions when
the communication network fails. If, at the
time of the failure, all the nodes have one
seat remaining for PAN AM 537, reserva-
tions could be made in both partitions. This
would violate correctness: Who should get
the last seat? There should not be more
seats reserved for a flight than physically
exist on the plane. (Some airlines do
not implement this constraint and allow
overbookings.)

The design of a replicated data manage-
ment algorithm tolerating partition failures
is a notoriously hard problem. Typically,
the cause or extent of a partition failure

In addition, slow responses from certain
processors can cause the network to appear
partitioned even when it is not, further
complicating the design of a fault-tolerant
algorithm.

As far back as 1977, partitioned opera-
tion was identified as one of the important
and challenging open issues in distributed
data management [Rothnie and Goodman
19771. Since then our understanding of the
problem has increased dramatically, and a
number of diverse solutions have been pro-
posed. In this paper, we survey several of
the more general solutions, and discuss cur-
rent research trends in this still young and
active research area.

Although our discussion is couched
within a database context, most results
have more general applications. In fact, the
only essential notion in many cases is that
of a transaction. Hence these strategies are
immediately applicable to mail systems,
calendar systems, object-oriented systems,
and other applications using transactions
as their underlying model of processing.

The remaining sections of the survey are
organized as follows. Section 1 is a discus-
sion of the principal consideration in
designing a processing strategy for a
partitioned system: the trade-off between
correctness and availability. In Section 2
the notion of correctness in a replicated
database system is discussed, and a taxon-
omy of partition-processing algorithms is
introduced. Sections 3 and 4 are surveys of
the current solutions for transaction pro-
cessing while the system is partitioned, and
extensions and combinations are suggested.
A somewhat different problem is discussed
in Section 5: how to complete transactions
that are in progress at the time of a parti-
tion failure. Guidelines for selecting a par-
tition strategy are presented in Section 6,
along with suggestions for future research.

cannot be discerned by - the processors
themselves. At best. a Drocessor mav be 1. CORRECTNESS VERSUS AVAILABILITY

able to identify the &he> processors ih its When designing a system that will operate
partition; but, for the processors outside of when it is partitioned, the competing goals
its partition, it will not be able to distin- of availability (the system’s normal func-
guish between the case in which those pro- tion should be disrupted as little as possi-
cessors are simply isolated from it and the ble) and correctness (data must be correct
case in which those processors are down. when recovery is complete) must somehow

Computing Surveys, Vol. 17, No. 3, September 1985

Consistency in Partitioned Networks 343

be met. These goals are not independent;
hence trade-offs are involved.

Correctness can be achieved simply by
suspending operation in all but one of the
partition groups and forwarding updates at
recovery; but this severely compromises
availability. In applications in which par-
titions either occur frequently or occur
when access to the data is imperative, this
solution is not acceptable. For example, in
the airline reservation system it may be too
expensive to have a high-connectivity net-
work, and partitions may occasionally oc-
cur. Many transactions are executed each
second (TWA’s centralized reservations
system estimates 170 transactions per sec-
ond at peak time [Gifford and Spector
1984]), and each transaction that is not
executed may represent the loss of a cus-
tomer. In a military command and control
application, a partition can occur because
of an enemy attack, and it is precisely at
this time that we do not want transaction
processing halted.

On the other hand, availability can be
achieved simply by allowing all nodes to
process transactions “as usual” (note that
transactions can only execute if the data
that they reference are accessible). Correct-
ness may now be compromised, however.
Transactions may produce “incorrect” re-
sults (e.g., reserving more seats than phys-
ically available), and the databases in each
group may diverge. In some applications,
such “incorrect” results may be acceptable
in light of the higher availability achieved.
When partitions are reconnected, the
problems may be corrected by executing
transactions missed by a partition, and by
choosing certain transactions to “undo.” If
the chosen transactions have had no real-
world effects, they can be undone by using
standard database recovery methods. If, on
the other hand, they have had real-world
effects, then appropriate compensating
transactions must be run, transactions that
not only restore the values of the changed
database items but also issue real-world
actions to nullify the effects of the chosen
transactions (e.g., by canceling certain res-
ervations and sending messages to affected
users). Alternatively, correcting transac-
tions can be run, transforming the database

from an incorrect state to a correct state
without undoing the effects of any previous
transactions. For instance, in a banking
application, the correcting transaction for
overdrawing a checking account during a
partitioning would apply an overdraft
charge. Of course, in some applications in-
correct results are either unacceptable or
incorrectable. For example, it may not be
possible to undo or correct a transaction
that effectively hands $l,OOO,OOO to a
customer.

Since it is clearly impossible to satisfy
both goals simultaneously, one or both
must be relaxed to some extent, depending
on the application’s requirements. Relaxing
availability is fairly straightforward, you
simply disallow certain transactions at cer-
tain sites. Relaxing correctness, on the
other hand, usually requires extensive
knowledge about what the information in
the database represents, how applications
manipulate the information, and how much
undoing/correcting/compensating incon-
sistencies will cost. The first step in choos-
ing a partition-processing strategy is to

determine which is more important,
correctness or availability; the second step
is to try to understand the trade-offs be-
tween the two properties for the database
at hand.

2. THE NOTION OF CORRECTNESS

What does correct processing mean in a
database system? Informally, a database is
correct if it correctly describes the external
objects and processes that it is intended to
model. In theory, such a vague notion of
correctness could be formalized by a set of
static constraints on objects and their at-
tributes, and a set of dynamic constraints
on how objects can interact and evolve. In
practice, a complete specification of the
constraints governing even a small data-
base is impractical (besides, even if it were
practical, enforcing the constraints would
not be). Consequently, database systems
use a less ambitious, very general notion of
correctness based on the order of transac-
tion execution and on a small set of static
data constraints known as integrity con-
straints.

Computing Surveys, Vol. 17, No. 3, September 1985

344 l S. B. Davidson et al.

In this section, we examine the notion of
correctness, beginning informally with ex-
amples illustrating incorrect behavior, fol-
lowed by a more formal definition of
correctness in the traditional database
system. When referring to the state of the
database, we use the terms “correct” and
“consistent” interchangeably.

2.1 Anomalies

Consider a banking database that contains
a checking account and a savings account
for a certain customer, with a copy of each
account stored at both site A and site B.
Suppose that a communication failure iso-
lates the two sites. Figure 1 shows the result
of executing a checking withdrawal at A
(for $100) and two checking withdrawals at
B (totaling $100). Although the resulting
copies of the checking account contain the
same value, we know intuitively that the
actions of the system are incorrect: The
account owner extracted $200 from a
checking account containing only $100.
The anomaly is caused by conflicting write
operations issued in parallel by transac-
tions executing in different partitions.

Figure 1. An anomaly resulting from concurrent
write operations on the same data item in separate
partitions.

An interesting aspect of this example is
that in the resulting database all copies are
mutually consistent;l that is, all copies of a
data item contain the same value. Thus,
although it is commonly used as the cor-
rectness criterion for replicated file systems
and information databases, such as tele-
phone directories, mutual consistency is
not a sufficient condition for correctness in
a transaction-oriented database system. It
is also not a necessary condition: Consider
the example in which A executes the $100
withdrawal while B does nothing. Although
the resulting copies of the checking account
contain different values, the resulting da-
tabase is correct if the system recognizes
that the value in A’s copy is the most recent
one.

figure shows the result of executing a
checking withdrawal of $200 at site A, and
a savings withdrawal of $200 at site B.
Here, we assume that the semantics of the
checking withdrawal allow the account to
be overdrawn as long as the overdraft is
covered by funds in the savings account
(i.e., checking + savings 2 0). The seman-
tics of the savings withdrawal are similar.
In the execution illustrated, however, these
semantics are violated: $400 is withdrawn,
whereas the accounts together contain only
$300. The anomaly was not caused by con-
flicting writes (none existed since the
transactions updated different accounts),
but instead as a result of the fact that
accounts are allowed to be read in one
partition and updated in another.

Concurrent reads and writes in different
partitions are not the only sources of incon-
sistencies in a partitioned system; more will
be identified shortly. Nor do they always
cause inconsistencies: For example, if the
savings withdrawal in Figure 2 is changed
to a deposit, the intended semantics of the
database would not be violated. However,
the above are typical anomalies that can
occur if conflicting transactions are exe-
cuted in different partitions.

A different type of anomaly on the same
database is illustrated in Figure 2. This

2.2 Database Model

A database is a set of logical data items that
support the basic operations read and write.
The granularity of these items is not im-
portant: They could be records, files, rela-
tions, etc. The state of the database is an
assignment of values to the logical data
items. For brevity, logical data items are

’ This is the narrowest interpretation of several uses
of the term “mutual consistency” that appear in the
literature. Some authors use mutual consistency syn-
onymously with one-copy equivalence (defined in Sec-
tion 2.2).

SITE A SITE B

Checking := Checking - $100
Checking := Checking - $25

Checking := Checking - $75

Computing Surveys, Vol. 17, No. 3, September 1985

Consistency in Partitioned Networks l 345

SITE B

m”?“‘i”‘i

$.m
If checking+savings>$200
then savings := savings - $200

Figure 2. An anomaly resulting from
concurrent read and write operations in
different partitions.

SITE A

If checking+savings>$200
then checking := checking -

subsequently called data items or, more
simply, items.

A transaction is a program that issues
read and write operations on the data items.
In addition, a transaction may have effects
that are external to the database, such as
dispensing money or displaying results on
a user’s terminal. The items read by a
transaction constitute its readset; the items
written constitute its writeset. A read-only
transaction neither issues write requests
nor has external effects. Transactions are
assumed to be correct. More precisely, a
transaction, when executed alone, trans-
forms an initially correct database state into
another correct state [Traiger et al. 19821.

Transactions interact with one another
indirectly by reading and writing the same
data items. Two operations on the same
item are said to conflict if at least one of
them is a write. Conflicts are often labeled
either read-write, write-read, or write-
write, depending on the types of data
operations involved and their order of exe-
cution [Bernstein and Goodman 19811.
Conflicting operations are significant be-
cause their order of execution affects the
final database state.

A generally accepted notion of correct-
ness for a database system is that it exe-
cutes transactions so that they appear to
users as indivisible, isolated actions on the
database. This property, referred to as
atomic execution, is achieved by guarantee-
ing the following properties:

(1) The execution of each transaction is
an “all or nothing”: Either all of the
transaction’s writes and external oper-
ations are performed or none are
performed. (In the former case the
transaction is said to be committed; in

the latter case it is said to be aborted.)
The property is often referred to as
atomic commitment.

(2) The execution of several transactions
concurrently produces the same data-
base state as some serial execution of
the same transactions. The execution
is then said to be serializable.

The first property is established by the
commit and recovery algorithms of the
database system; the second is established
by the concurrency control algorithm.

Atomic transaction execution (the con-
current execution of transactions is serial-
izable), together with the assumption that
transactions are correct (a transaction ex-
ecuted alone transforms an initially correct
database state into another correct state),
implies by induction that the execution of
any set of transactions transforms an ini-
tially correct database state into a new,
correct state. Although atomic execution is
not always necessary to preserve correct-
ness (as we discuss in Section 4), most real
database systems implement it as their sole
criterion of correctness. This is because
atomic execution is simple (it corresponds
to users’ intuitive model that transactions
are processed sequentially) and can be
enforced by very general mechanisms
that determine the order of conflicting
data operations. These mechanisms are
independent of both the semantics of the
data being stored and the transactions
manipulating it.

Some systems allow additional correct-
ness criteria to be expressed in the form of
integrity constraints. Unlike atomicity,
these are semantic constraints. They may
range from simple constraints (e.g., the
balance of checking accounts must be

Computing Surveys, Vol. 17, No. 3, September 1985

346 . S. B. Davidson et al.

nonnegative) to elaborate constraints that
relate the values of many data items. In
systems enforcing integrity constraints, a
transaction is allowed only if its execution
is atomic and its results satisfy the integrity
constraints. To simplify the discussion,
throughout the rest of the paper, we
assume that integrity constraints are
checked as part of the normal processing of
a transaction.

Notice that we have not specified
whether we were discussing a centralized
or a distributed database system; it has not
been necessary to do so since the defini-
tions, the properties of transaction process-
ing, and the correctness criteria are the
same in both. Of course, the algorithms for
achieving correct transaction processing
differ markedly between the two types of
implementations.

In a replicated database, the value of each
logical item x is stored in one or more
physical data items, which are referred to
as the copies of x. Each read and write
operation issued by a transaction on some
logical data item must be mapped by the
database system to corresponding opera-
tions on physical copies. To be correct, the
mapping must ensure that the concurrent
execution of transactions on replicated data
is equivalent to a serial execution on non-
replicated data, a property known as
one-copy serializability. The logic that is
responsible for performing this mapping is
called the replica control algorithm.

As a correctness criterion, one-copy se-
rializability is attractive for the same rea-
sons that (normal) serializability is: It is
intuitive, and it can be enforced using
general-purpose mechanisms that are in-
dependent of the semantics of the database
and of the transactions executed.

The literature on the model and prob-
lems discussed above is extensive. The
transaction concept was first introduced by
Eswaran et al. [19761. A single-site recovery
algorithm is presented by Gray et al. [19811.
Single-site concurrency control algorithms
are too numerous to list, but three
influential proposals are two-phase locking
[Eswaran et al. 19761, timestamp ordering
[Bernstein and Goodman 19801, and
optimistic concurrency control [Kung and

Robinson 19811. The seminal paper on
serializability theory was written by
Papadimitriou [19791. The enforcement of
integrity constraints is discussed by
Blaustein [1981]. The article by Gray
[1978] contains an in-depth treatment of
many issues in the implementation of a
database system.

For nonpartitioned distributed database
systems, concurrency control algorithms
are surveyed by Bernstein and Goodman
[1981] and Kohler [1981]. Atomic commit-
ment protocols are discussed by Gray
[1978], Hammer and Shipman [1980], and
Skeen [1982b]. Replica control algorithms
are contained in Gifford [1979], Stone-
braker [19791, and Goodman et al. [1983].
A good discussion of the requirements for
maintaining one-copy serializability in the
presence of failures can be found in Bern-
stein and Goodman [19831.

2.3 Partitioned Operation

Let us now consider transaction processing
in a partitioned network, where the com-
munication connectivity of the system is
broken by failures or by anticipated com-
munication shutdowns. To keep the expo-
sition simple, let us assume that the
network is “cleanly” partitioned (that is,
any two sites in the same partition can
communicate and any two sites in different
partitions cannot communicate) and that
one-copy serializability is the correctness
criterion.

When the system is partitioned, each
partition must determine which transac-
tions it can execute without violating the
correctness criteria. Actually, this can be
thought of as two problems: (1) each par-
tition must maintain correctness within the
part of the database stored at the sites
comprising the partition, and (2) each par-
tition must make sure that its actions do
not conflict with the actions of other par-
titions, so that the database is correct
across all partitions.

If we assume that each site in the net-
work is capable of detecting partition fail-
ures, then correctness within a partition
can be maintained by adapting one of the
standard replica control algorithms for

Computing Surveys, Vol. 17, No. 3, September 1985

Consistency in Partitioned Networks l 347

nonpartitioned systems. For example, the
sites in a partition can implement a write
operation on a logical object by writing all
copies in the partition. This, along with a
standard concurrency control protocol,
ensures one-copy serializability in the
partition.

The really difficult problem is ensuring
one-copy serializability across partitions.
As illustrated in Figures 1 and 2, the trans-
actions in each partition may be one-copy
serializable, but conflicting operations can
take place in different partitions. Thus it is
not sufficient to run a correct replica con-
trol algorithm in each partition to ensure
that overall transaction execution is one-
copy serializable.

A number of solutions have been pro-
posed for keeping data globally consistent,
and most of the remainder of the survey is
devoted to discussing these solutions. Many
of these solutions are based on the simple
observation that a sufficient (but not nec-
essary) condition for correctness is that no
two partitions execute conflicting data
operations. However, not all partition-
processing solutions use one-copy serializ-
ability as their correctness criterion, nor do
all attempt to maintain correctness across
partitions. We discuss these alternatives in
Section 2.4.

In theory, a partition-processing strategy
is composed of two algorithms: one to en-
sure correctness across partitions and a
replica control algorithm to ensure one-
copy behavior. In practice, many strategies
are composed of a single algorithm that
solves both problems. Most “single” algo-
rithms do not require partitions to be de-
tected and tolerate more than just “clean”
network failures. Such algorithms are at-
tractive for their additional fault tolerance.
In Sections 3 and 4, we present these
“single algorithms,” along with “partition
control” algorithms. In both, however, we
emphasize the partition control aspect.

In addition to solving the problem of
global correctness, a partition-processing
strategy must solve two problems of a dif-
ferent sort. First, when the partitioning
occurs, the database is faced with the prob-
lem of atomically committing ongoing
transactions. The complication is that the

sites executing the transaction may find
themselves in different partitions, and thus
unable to communicate a decision as to
whether to complete the transaction (com-
mit) or to undo it (abort). Note that the
problem of atomic commitment in multiple
partitions does not arise for a transaction
submitted after the partitioning occurs
(such a transaction will be executed in only
one partition) and that this problem arises
in any partitioned database system whether
it is replicated or not.

Second, when partitions are reconnected,
mutual consistency2 between copies in dif-
ferent partitions must be reestablished.
That is, the updates made to a logical data
object in one partition must be propagated
to its copies in the other partitions. Con-
ceptually, this problem can be solved in a
straightforward manner by extra bookkeep-
ing whenever the system partitions. For
example, each update applied in a partition
can be logged, and this log can be sent to
other partitions upon reconnection. (Such
a log may be integrated with the “recovery
log” that is already kept by many systems.)
In practice, an efficient solution to this
problem is likely to be intricate and very
dependent on the normal recovery mecha-
nisms employed in the database system.
For this reason, we do not discuss it further.

2.4 Classification of Strategies

Partition-processing strategies can be clas-
sified along two orthogonal dimensions.
The first dimension concerns the trade-off
between consistency and availability; the
two extremes are pessimistic and optimistic.
The second dimension concerns the type of
information used in determining correct-
ness; the two extremes are syntactic and
semantic. Thus a strategy can be loosely
classified as either pessimistic-syntactic,
optimistic-syntactic, pessimistic-seman-
tic, or optimistic-semantic.

Pessimistic strategies prevent inconsist-
encies by limiting availability. Each parti-
tion makes worst-case assumptions about
what other partitions are doing, and

’ As before, by “mutual consistency” we mean that the
copies contain the same value.

Computing Surveys, Vol. 17, No. 3, September 1985

348 l S. B. Davidson et al.

operates under the pessimistic assumption
that if an inconsistency can occur, it will
occur. These strategies differ primarily in
the policy they use to restrict transaction
processing. Since they ensure consistency,
it is straightforward to merge the results of
individual partitions; updates are merely
propagated from copies in one partition to
their counterparts in the other partitions
at reconnection time.

At the other extreme, optimistic strate-
gies do not limit availability. Any transac-
tion may be executed in any partition that
contains copies of the items read and writ-
ten by the transaction. Hence, although
transaction processing within each parti-
tion is consistent, and no user staying
within a single partition would detect an
inconsistency, global inconsistencies may
be introduced. These strategies operate un-
der the optimistic assumption that incon-
sistencies, even if possible, rarely occur. At
reconnection time, the system must first
detect inconsistencies and then resolve
them.

Optimistic strategies differ primarily in
how they detect and resolve inconsisten-
cies. In Section 1 we discussed several
ways of resolving conflicts. These include
undoing a set of the transactions that have
generated no significant external actions,
running compensating transactions to nul-
lify the effects of transactions generating
external actions, and running corrective
transactions that transform the database
to a “correct,” but not necessarily serializ-
able, state. Obviously, the latter approach
requires finding a suitable correctness cri-
terion in lieu of one-copy serializability.

Syntactic approaches use one-copy seri-
alizability as their sole correctness criterion
and check serializability by examining
readsets and writesets of the executed
transactions. Hence neither the semantics
of the transactions (i.e., how the items read
are used to generate the result) nor the
semantics of the data items themselves are
used in ascertaining correctness. Syntactic
approaches are implemented using general-
purpose concurrency control algorithms
such as two-phase locking [Eswaran et al.
19761.

At the other extreme, semantic ap-
proaches use either the semantics of the

Computing Surveys, Vol. 17, No. 3, September 1985

transactions or the semantics of the data-
base in defining correctness. Although this
is somewhat of a “catchall” category, there
are two discernible subcategories. The first
uses serializability as the correctness cri-
terion but also uses the semantics of the
transactions to test serializability. The sec-
ond abandons serializability altogether and
defines correctness in terms of the contents
of the database itself; the correctness cri-
terion is intended to capture the semantics
of the data stored in the database. Such
semantic constraints fall outside of the tra-
ditional model of transaction processing.

3. SYNTACTIC APPROACHES

All approaches in this section use serial-
izability as the correctness criterion and
check serializability by comparing trans-
actions’ readsets and writesets. We assume
that a correct concurrency-control mecha-
nism coordinates transaction execution
within a partition; hence transaction exe-
cution within a partition is serializable.

We also assume that, at the time of the
partitioning, all copies are mutually consis-
tent and there are no in-progress transac-
tions. Note that this assumption is not
realistic and is made to simplify the presen-
tation. In general, copies of data items may
not be consistent at partition time because
some have processed updates of a commit-
ted transaction whereas others have not.
How the system resolves these “blocked”
transactions is discussed in Section 5,
which deals with atomic commitment.
Transactions at earlier stages of processing
can be aborted and rerun in the partition
containing their site of origin.

3.1 Optimistic Strategies

3.7.7 Version Vectors [Parker et al. 19831

Version vectors were proposed for use in
the distributed operating system LOCUS
to detect write-write conflicts between cop-
ies of files [Popek et al. 19811. Each copy
of a file f has a version vector associated
with it that counts the number of updates
of f originating at each site at which f is
stored. The vector consists of a sequence of
n pairs, where n is the number of sites at
which f is stored; the ith vector entry

C updates f once.

CONFLICT: 3>2,0=0, but 04.
Manual assistance required.

(Si : vi) counts the number of updates
to f, Ui , originating at site Si. Conflicts that
occur when more than one partition up-
dates the file can be detected by comparing
version vectors.

Vector v is said to dominate vector v’ if
v and v ’ are version vectors for the same
file and Ui 2 u,! for i = 1, . . . , n. Intuitively,
if v dominates v’, the copy with vector v
has seen a superset of the updates seen by
the copy with vector v’. Two vectors are
said to conflict if neither dominates. In this
case, the copies have seen different updates.
For example, (A: 3, B: 4, C: 2) since
3 > 2, 4 > 1 and 2 = 2, but (A:3, B:l,
C:2) and (A:2, B:4, C:2) conflict since
3 > 2 but 1~ 4.

When two sites discover that their ver-
sion vectors for f conflict, an inconsistency
has been detected. How to resolve the in-
consistency is left up to the database ad-
ministrator (DBA).

Example. Consider the partition graph
for file f shown in Figure 3. Sites A, B, and
C initially have the same version off. The
system then partitions into groups AB and
C, and A updates f twice. Hence both A and
B have version vectors of (A : 2, B: 0, C: 0),
while C is (A : 0, B : 0, C : 0). Site B then
splits off from site A and joins site C. Since
C did not update f and B has the current
version, there is no conflict ((A: 2, B: 0,
C:O) dominates (A:O, B:O, C:O)), and B’s
version (and vector) is adopted for the new
group BCE. During this new partition fail-
ure, A updates its version off once, making
group A’s version vector (A : 3, B : 0, C: 0),
and C updates its version off once, making
group BC’s version vectors (A: 2, B:O,
C: 1). When groups A and BC now com-

Consistency in Partitioned Networks l 349

ABC

A\

cA:O, B:O, C:O>

<A:2, B:O, C:o> A B
A updates f twice. , \ \ <*:O* B:“, c:o’

<A:3, B:O, CO> A B C <A:2, B:O, C:l> Figure 3. Conflict on file f de-
A mdates f once. \ I NO CONFLICT: B’s version adopted. tected by incomparable version

vectors.

bine, there is a conflict and neither of (A : 2,
B:O, C:l) or (A:3, B:O, C:O) dominates
the other.

Version vectors detect write-write con-
flicts only. Read-write conflicts cannot
be detected because the files read by a
transaction are not recorded. Hence the
approach works well for transactions ac-
cessing a single file, which are typical in
many file systems, but not for multifile
transactions, which are common in data-
base systems.

Example. Consider applying version vec-
tors to the banking example of Figure 1,
where communication between sites A and
B fails, as shown in Figure 4. During the
failure, the transaction executed at A up-
dates the checking balance based on the
value of the savings balance; the transac-
tion executed at B updates the savings bal-
ance based on the value of the checking
balance. No conflict will be detected, even
though the above is clearly not serializable.

To extend the version vectors algorithm
so that read-write conflicts are detectable,
reads and writes of transactions must be
logged. This leads to an algorithm very
similar to the Optimistic Protocol pre-
sented next.3

3.7.2 The Optimistic Protocol [Davidson 1982,
19841

The Optimistic Protocol uses a precedence
graph to detect inconsistencies. A prece-
dence graph models the necessary ordering

3 Historical note. Such an extension was proposed by
Parker and Ramos (19821. Their conflict detection
algorithm, however, is incorrect: It does not detect all
inconsistencies and falsely detects inconsistencies.

Computing Surveys, Vol. 17, No. 3, September 1985

350 l S. B. Davidson et al.

checking balance savings balance

<A:l, B:O> A/A B <:;,‘;“,”

‘AI/ ’

<A:O, B:O> A/’ “\‘,“::,“f’n:I>

‘A,/ ’

NO CONFLICT detected NO CONFLICT detected
A’s version adopted. B’s version adopted.

<A:l, B:O> <A:O, B: l>

Figure 4. Incorrect conflict detection using version vectors with multifile
transactions.

between transactions, and is used to check
serializability across partitions. The prece-
dence graphs are adapted from serialization
graphs, which are used to check serializa-
bility within a site [Papadimitriou 19791.
In the following we assume that the readset
of a transaction contains its writeset. (The
reason for this assumption is to avoid cer-
tain NP-complete problems in checking
serializability.)

In order to construct the precedence
graph, each partition maintains a log,
which records the order of reads and writes
on the data items. From this log, the read-
sets and writesets of the transactions and
a serialization order on the transactions
can be deduced. (A serialization order exists
since, by assumption, transaction execu-
tion within a partition is serializable.) For
partition i, let Z’il, Tiz, . . . , Tim be the
set of transactions, in serialization order,
executed in i.

The nodes of the precedence graph rep-
resent transactions; the edges represent
interactions between transactions. The
first step in the construction of the graph
is to model interactions between transac-
tions in the same partition. Two types of
edges (interactions) are identified:

(4

(b)

(Data) Dependency Edges4 (Tij --+
Tik). These edges represent the fact
that one transaction Tik read a value
produced by another transaction Tij in
the same partition (WRITESET(Tij) n
READSET(Tik) # 0, j < 12).
Precedence Edges (Tij += Tik). These
edges represent the fact that one trans-

’ Dependency edges are also called ripple edges [Dav-
idson 1982, 19841.

action Tij read a value that was later
changed by another transaction Tik in
the same partition (READSET(Tij) n
WRITESET(Tik) # 0, j < lz).

A dependency edge from Tij to Tik indicates
that the output of Tij influenced the exe-
cution of Tik ; hence the “existence” of Tik
depends on the “existence” of Tij- The
meaning of a precedence edge Tij from Tik
is more subtle: Tik does not influence Tij
only because Tij executed before it. In this
case the “existence” of Tik does not depend
on the existence of Tij. In both cases, an
edge from Tij to Tik indicates that the order
of execution of the two transactions is re-
flected in the resulting database state. Note
that the graph constructed thus far must
be acyclic since the orientation of an edge
is always consistent with the serialization
order.

To complete the precedence graph, con-
flicts between transactions in different par-
titions must be represented. A new type of
edge is defined for this purpose:

(c) Interference Edges (Tij + Tdk, i # 1).
These edges indicate that Tij read an
item that is written by Tlk in another
partition (READSET(Tij) n WRITE-
SET(TJ # 0).

The meaning of an interference edge is the
same as a precedence edge: An interference
edge from Tij to Tlk indicates that Tij logi-
cally “executed before” Tlk since it did not
read the value written by T,k. An interfer-
ence edge signals a read-write conflict be-
tween the two transactions. (A write-write
conflict manifests as a pair of read-write
conflicts since each transaction’s readset
contains its writeset.)

Computing Surveys, Vol. 17, No. 3, September 1985

Consistency in Partitioned Networks 351

PARTITION 1 PARTITION 2

Figure 5. Conflict between transactions executed in
different partitions detected by cycle in precedence
graph.

Example. Suppose that the serial history
of transactions executed in PI is (Tn , T,z,
TIa], and that of P2 is {Tzl, Tz]. The
precedence graph for this execution is given
in Figure 5, where the readset of a trans-
action is given above the line and the
writeset below the line. (Thus, transaction
T,, reads b, c and writes c.)

Intuitively, cycles in the precedence
graph are bad: If T and T’ are in a cycle,
then the database reflects the results of T
executing before T’ and of T’ executing
before T-a contradiction. Conversely, the
absence of cycles is good: The precedence
graph for a set of partitions is acyclic if and
only if the resulting database state is consis-
tent [Davidson 19841. An acyclic prece-
dence graph indicates that the transactions
from both groups can be presented by a
single serial history, and the last updated
copy of each data item is the correct value.
A serialization order for the transactions
can be obtained by topologically sorting the
precedence graph.

Inconsistencies are resolved by rolling
back (undoing) transactions until the re-
sulting subgraph is acyclic. When a trans-
action is rolled back, transactions con-
nected to it by dependency edges must also
be rolled back, since these transactions read
the values produced by the selected trans-
action. Hence rolling back one transaction
may precipitate the rolling back of many, a
problem known as cascading rollbacks.
Transactions connected to a rolled-back

transaction by precedence edges are not
rolled back since they did not read the
results of the rolled-back transaction. In
the above example, if T,, is selected, then
T,, and T13 must also be selected. Simply
selecting TIa, Tzl, or T22, however, also
breaks the cycle and involves only one
transaction. Note that transactions must
be rolled back in reverse order of execution;
that is, within each partition, the value of
a data item that is updated by one or more
rolled-back transactions from that group
will be restored to the value read by the
earliest rolled-back transaction. To merge
the partitioned databases, the final value
of each updated data item in each partition
group can simply be forwarded to the other
group (a data item cannot be updated by
both groups after transactions have been
rolled back, since the resulting precedence
graph is acyclic).

Note that the notion of “committing” a
transaction has been somewhat violated. A
transaction T is “committed” during a fail-
ure subject to confirmation at recovery. If
all actions performed by Tare recoverable,
rolling back is not a problem; one merely
replaces the values updated by T with the
values read by T. However, some unrecov-
erable actions may also have been per-
formed. For example, an automatic teller
may have handed money to a customer,
results may have been reported to a user,
or a missile may have been fired. Some
such actions may be compensated for; that
is, there could be some T’ that can be
executed to nullify the effect of T. For
example, the bank could charge the account
of the customer who accidentally received
cash from the automatic teller, or the re-
porting procedure could inform the user
that the reported results were inaccurate
due to system failure (it is hoped that the
user would have been made aware of this
possibility from the start). Other actions-
such as the firing of a missile-may have
no compensation. Such actions should not
be permitted during failure since there can
be no guarantee that the transaction will
not be rolled back.

The algorithm used to select which trans-
actions to roll back should strive to mini-
mize some cost function, for example, the

Computing Surveys, Vol. 17, No. 3, September 1985

352 . S. B. Davidson et al.

number of rolled-back transactions, or the
sum of the weights of the rolled-back trans-
actions (where the assignment of weights
can be application dependent). Unfortu-
nately, minimizing either the number of
transactions or the sum of their weights is
an NP-complete problem [Davidson 19841;
hence heuristics must be used.

The most promising heuristics use the
following observation: Breaking all two-
cycles in a precedence graph tends to break
almost all cycles. A two-cycle is a cycle
consisting of two transactions connected
by a pair of interference edges in opposite
directions. These cycles tend to represent
write-write conflicts on data items. Two-
cycles can be broken optimally by using an
algorithm requiring time O(N2.81), where N
is the number of transactions [Davidson
19821. After the two-cycles have been bro-
ken, the few remaining cycles can be broken
by a greedy algorithm, one that repetitively
selects the lowest-weight transaction in-
volved in a cycle. Simulation studies have
shown that such heuristics work very well,
outperforming all other strategies tested
[Davidson 19841.

The performance of the Optimistic Pro-
tocol is studied by Davidson [19821. A prob-
abilistic model is developed that yields a
formula for estimating rollback rate given
the number of transactions, a model of the
average transaction, and the size of the
database. Simulation results in the same
paper yield additional insight into rollback
rates. These studies indicate that the Op-
timistic Protocol performs best when

(1) a small percentage of items are updated
during the partitioning, and

(2) few transactions have large writesets.

Whenever (1) holds, the probability that a
given transaction will be rolled back de-
pends more on the size of its writeset than
its readset. Concerning (2), not only is the
occasional large transaction more likely to
conflict with another transaction, but in
addition its rollback is likely to cause other
rollbacks. Consequently, the rollback rate
is quite sensitive to variance in transaction
size.

3.2.2 Tokens [Minoura and Wiederhold 19821

This approach is very similar to that above
except that the primary copy of an item
can change for reasons other than site fail-
ure. Each item has a token associated with

5 Normally only the lock for a data item must be
acquired at the primary site: The actual read may be
performed on any copy once the lock has been granted.

3.2 Pessimistic Strategies

The first group of pessimistic strategies,
primary site (copy), tokens, and voting,
were initially proposed as distributed con-
currency-control mechanisms. However,
they can also be used to prevent conflicts
between transactions when the network
partitions. Missing writes is an adaptive
voting strategy that improves performance
when there are no failures in the system.
Accessible copies is an adaptation of a
“read-one/write-all” protocol. The last
strategy, designed specifically for parti-
tioned networks, strives to increase avail-
ability by exploiting known characteristics
of the work load.

3.2.7 Primary Site, Copy [Alsberg and Day
1976; Stonebraker 19791

Originally presented as a resilient tech-
nique for sharing distributed resources, this
approach suggests that one copy of an item
be designated the primary copy, and as such
be responsible for that item’s activity. All
reads for a data item must be performed at
the primary site for that data item.5 Up-
dates are propagated to all copies. In the
case of a partition failure, only the partition
containing the primary copy can access the
data item. Updates are simply forwarded at
recovery to regain consistency.

This approach works well only if site
failures are distinguishable from network
failures. If this is the case and the primary
site for a data item fails, a new primary can
be elected (for a discussion of election pro-
tocols, see Garcia [1982]). However, if it is
uncertain whether the primary failed or the
network failed, the assumption must be
that the network failed and no new primary
can be elected.

Computing Surveys, Vol. 17, No. 3, September 1985

Consistency in Partitioned Networks 353

it, permitting the bearer to access the item.
In the event of a network partition, only
the group containing the token will be able
to access the item.

The major weakness with this scheme
is that accessibility is lost if the token is
lost as a result of site or communication
medium failure.

3.2.3 Voting [Gifford 19791

The first voting approach was the majority
consensus algorithm [Thomas 19791. What
we now describe is the generalization of
that algorithm proposed by Gifford [19791.

In this approach, every copy of a repli-
cated item is assigned some number of
votes. Every transaction must collect a read
quorum of r votes to read an item, and a
write quorum of w votes to write an item.
Quorums must satisfy two constraints:

(1) r + w exceeds the total number of votes
v assigned to the item, and

(2) w > v/2.

The first constraint ensures that there is
a nonnull intersection between every read
quorum and every write quorum. Any read
quorum is therefore guaranteed to have a
current copy of the item. (Version numbers
are used to identify the most recent copy.)
In a partitioned system, this constraint
guarantees that an item cannot be read in
one partition and written in another. Hence
read-write conflicts cannot occur between
partitions.

The second constraint ensures that two
writes cannot happen in parallel or, if the
system is partitioned, that writes cannot
occur in two different partitions on the
same data item. Hence write-write con-
flicts cannot occur between partitions.

Example. Suppose that sites S, , SZ , and
S3 all contain copies of items f and g, and
that a partition PI occurs, isolating S1 and
Sz from SB , as shown in Figure 6a. Initially,
f = g = 0, each site has 1 vote for each off
and g, and r = w = 2 for both f and g.
During the partitioning, transaction Tl
wishes to update g on the basis of values
read for f and g. Although it cannot be
executed at Ss since it cannot obtain a read

Figure 6. Correct transaction processing during par-
titioning using voting.

quorum for f, or read and write quorums
for g, it can be executed at S1 , and the new
value g = 1 is propagated to Sp.

Now suppose that PI is repaired, and a
new failure Pz isolates S1 and Ss from Sz,
as shown in Figure 6b. During’ this new
failure, transaction Tz wishes to update f
on the basis of values read for f and g. It
cannot be executed at SZ since it cannot
obtain a read quorum for g, or read and
write quorums for f. It can be executed at
SB , however. Using the most recent copy of
g = 1 (obtained by reading copies at both
S1 and SB and taking the latest version) T2
computes the new value f = 1 and propa-
gates the new value to S, .

Notice that the above example reduces
to a majority vote since each copy has ex-
actly one vote and r and w are a simple
majority [Thomas 19791.

Varying the weight of a vote can be used
to reflect the needed accessibility level
of an item. For example, in a banking
application, a customer may use certain
branches more frequently than other
branches. Suppose that there are 5
branches of the bank and the customer uses
branches 1, 2, and 3 with equal frequency,
but never goes to branches 4 or 5. Assigning
r = w = 2 and the customer’s account at
branches 1, 2, and 3 a vote of 1 but 0
elsewhere would reflect this usage pattern.

The quorum algorithm differs from those
previously discussed in two important
ways. First, by choosing r < v/2, it is pos-
sible for an item to be read accessible in
more than one partition, in which case it
will be write accessible in none. Read ac-
cessibility can be given a high priority by
choosing r small. Second, the algorithm

Computing Surveys, Vol. 17, No. 3, September 1985

354 l S. B. Davidson et al.

does not distinguish among communication
failures, site failures, or just slow response.
A serious weakness of the previous schemes
is that availability is severely compromised
if a distinction cannot be made.

A weakness of the quorum scheme is that
reading an item is fairly expensive. A read
quorum of copies must be read in this
scheme, whereas a single copy suffices for
all other schemes.

3.2.4 Missing Writes [Eager and Sevcik 19831

Eager and Sevcik’s algorithm is based on
the observation that while requiring a quo-
rum for items in the readset as well as for
those in the writeset is a sufficient restric-
tion to guarantee correct or serializable ex-
ecution during partition failures, it is not
necessary when there are no failures [Bern-
stein and Goodman 1983; Eager and Sevcik
19831. Requiring a readset quorum signifi-
cantly degrades performance when there
are no failures, but is necessary to guaran-
tee correctness when there are failures.
Thus transactions run in two modes, nor-
mal and failure. When in normal mode,
transaction T reads one copy of each data
item in its readset and updates all copies in
its writeset. If some copy cannot be up-
dated, T becomes “aware” of a missing up-
date, and must run in failure mode. Failure
mode is very similar to the majority con-
sensus algorithm alluded to above: Quo-
rums must now be obtained for each data
item in the readset and writeset. This
“missing update information” is then
passed along to all following transactions
that need the information, that is, all trans-
actions connected to T by a path of de-
pendency and precedence edges originating
at T. These transactions also become aware
of missing updates, and must run in failure
mode. Since T cannot see the future and
does not know what later transactions will
be affected, a level of indirection is used:
Missing update information is posted at
sites, along with a description of what

6A quorum can essentially be thought of as the
“w > v/2” from Condition 2 in Section 3.2.3; it is a set
of (possibly weighted) votes from sites containing
copies of the data item such that any two quorums for
that data item intersect.

transactions need the information. When
the failure is repaired, the missing update
information will eventually be posted at the
sites that “caused” the missing updates,
that is, those that did not receive the up-
dates. The updates then can be applied,
and postings removed from other sites
throughout the system.

The algorithm hinges on the ability to
recognize “missing writes” and to propagate
the information to later transactions so
that cycles in the precedence graph of com-
mitted transactions are avoided. Note,
however, that certain transactions may be
able to execute without restriction even if
there are partition failures present in the
system; there is no harm in allowing read-
only transactions to “run in the past” dur-
ing a failure, that is, to read an old value of
a data item, as long as no cycles result in
the precedence graph of committed trans-
actions. This ability to run in the past
allows a site that has become isolated from
the rest of the network to execute read-only
transactions even if updates are being per-
formed on remote copies of the data items
stored at that site.

Example. Suppose that there are four
sites in the system S1, SZ , & , and S, . Sites
S, , Sp, and S3 contain copies of data item
a; site S1 , S3, and Sq contain copies of data
item b. Now suppose that a failure occurs,
isolating sites S, and Sp from sites & and
Sq ; transactions Tl, T2, T3 are initiated at
site Si (in that order), while transaction T4
is initiated at Sq. The readsets, writesets,
and precedence graph are depicted in Fig-
ure 7. (The precedence graph shown is of
uncommitted transactions since cycles in
the precedence graph of committed trans-
actions will obviously be avoided.)

Ti is unaware of the failure, since it can
obtain a copy of a and b at S1 ; it can happily
run in the past. T2 becomes aware of the
failure when it is unsuccessful at updating
the copy of a at SB ; it is allowed to commit,
however, since it can receive a quorum for
each data item in its readset and writeset
(assuming that each copy has a weight of
1). T2 is then required to pass all of its
missing update information to transactions
that are incoming nodes for outgoing edges
from T2, such as T3 in this example. If T3

Computing Surveys, Vol. 17, No. 3, September 1985

Consistency in Partitioned Networks l 355

(b) a file containing the values of missing
updates, to be applied to the appropri-
ate copies when recovery occurs;

(c) a file indicating the transaction re-
starts, aborts, or commits of which the
site is aware, used to resolve the
“blocked” transactions alluded to in the
introduction to Section 3;

(d) a record of the missing updates that
have been applied at the site.

PAFCl’lTION 1 PARTITION 2

T2:
o,b

6

4
T,: a,b

/

Figure 7. Potential conflict between transactions in
different partitions is avoided by requiring transac-
tions aware of missing updates to collect read and
write quorums.

were to successfully commit, it would also
be required to pass on the missing update
information. In this example, however, T3
is not allowed to commit; since it is aware
of missing updates, it is required to obtain
a quorum for data items in its readset,
which it cannot for b. Transaction T4 would
also not be allowed to commit since al-
though it can obtain a quorum for b, it finds
that it cannot update the copy of b at Sz,
and must then run in failure mode. Since
it cannot obtain a quorum for a, it cannot
complete successfully. Thus in this example
(as well in all others), there are no cycles
in the precedence graph of committed trans-
actions. Note that the restriction that T2
and T4 be rerun in failure mode is neces-
sary. Suppose that T2 and T4 both read a
and b, but T2 updated a while T4 updated
b. If they both executed in normal mode
and did not switch to failure mode when
they become aware of missing updates, a
cycle would result in the precedence graph
of committed transactions.

In order to implement this method, re-
gardless of the concurrency-control mech-
anism being used, several files must be kept
at each site. They include

(a) a file for posted missing updates, with
indications of which transactions need
to be informed about the missing up-
dates;

Although these files can grow very rapidly
if the system is active during failures, they
must only be maintained when failures are
present in the system, and thus do not
impact performance in the absence of fail-
ures. Furthermore, since quorums are only
required when a transaction is aware of a
missing update, when there are no failures
or the transaction is not required to know
about the failure, reading an item incurs no
additional overhead. The method is also
very flexible: It requires no “detection” of
failure other than the inability to perform
updates, and no special “global” action or
temporary cessation of activity to propa-
gate updates when the failure is repaired.

3.2.5 Accessible Copies Algorithm [El Abbadi
et al. 19851

The Accessible Copies algorithm is based
on the following intuitive, “read-one/write-
all” protocol:

(1)

(2)

(3)

A data item can be read and written
within a partition only if a majority of
its copies reside on member sites of the
partition. In this case, the item is said
to be accessible.
A read operation on an accessible data
item is implemented by reading the
nearest copy of the item residing on a
member of the partition.
A write operation on an accessible
data item is implemented by writing
all copies residing on members of the
partition.

The first rule of the protocol ensures that
only one partition may access a given data
item. The second and third rules ensure
that the copies of a data item remain con-
sistent within a partition.

Computing Surveys, Vol. 17, No. 3, September 1985

356 l S. B. Davidson et al.

The above protocol is appealing because
it is simple and because it implements the
read operation inexpensively. The protocol
ensures one-copy serializability in an
“ideal” network, where partition failures
are “clean” and sites detect partition fail-
ures almost instantaneously. Unfortu-
nately, if either property of the ideal
network is violated, which sometimes hap-
pens in any real system, incorrect execu-
tions can occur.

The principal idea in the Accessible Cop-
ies algorithm is the implementation of an
abstract communication layer on top of the
real communication network, where the be-
havior of the new layer approximates that
of the “ideal” network. A variant of the
above read-one/write-all protocol can then
be implemented on top of the abstract
communication layer.

The abstract communication layer cre-
ates and manipulates virtual partitions,
which are rough analogs of the actual par-
titions that occur in the real network. A
virtual partition has three important attri-
butes. The first is its creation time, which
is the logical clock time of its creation
[Lamport 19781. The second is its set of
potential members, which is the set of sites
that are allowed to join the partition. The
third is its set of actual members. The first
two attributes are static, and are known to
each member of a virtual partition. The
third attribute is dynamic, and generally
will not be known with certainty by any
site in the virtual partition.

One important difference between real
and virtual partitions is that virtual parti-
tions are created explicitly according to a
well-defined protocol. Loosely speaking,
the steps of the creation protocol are as
follows. First, a group of sites depart from
their current virtual partitions. (A site can
depart from its current virtual partition
unilaterally by setting a local variable.)
Second, the group of sites collectively de-
termine the creation time and the potential
members of the new virtual partition. The
creation time must be larger than any pre-
vious creation time, and the set of potential
members can include only those sites par-
ticipating in the creation protocol. Last, the
sites in the group asynchronously become
actual members of the new virtual partition

(be setting an appropriate variable). It
should be remarked that the creation pro-
tocol given by El Abbadi et al. [1985]
tolerates additional partition failures
occurring during its execution.

Given a correct implementation of the
abstract communication layer, a variant of
the simple read-one/write-all protocol can
be used to control access to data items. The
variant protocol is obtained by substituting
the phrase “potential member(s)” of the
virtual partition for all occurrences of the
phrase “member(s) of the partition” in the
original protocol. The resulting protocol
provides one-copy serializability when used
in conjunction with an appropriate failure
recovery protocol.

3.2.6 Class Conflict Analysis [Skeen and
Wright 1984; Wright 19831

The pessimistic strategies discussed thus
far strive to make each data record avail-
able for reading and writing in some
partition by arbitrary transactions. These
strategies, then, emphasize the general
availability of individual records. An alter-
nate strategy, class conflict analysis, strives
to ensure the capability of performing im-
portant high-level operations on the data.
Hence this strategy emphasizes the availa-
bility of high-level data operations, possibly
at the expense of the general availability of
records.

To illustrate the difference between the
two approaches, consider again the banking
example shown in Figure 2, where a cus-
tomer can overdraw his or her checking
account as long as the overdraft is covered
by funds in his or her savings account. If
the system partitions, none of the discussed
pessimistic strategies would allow a check-
ing withdrawal (which requires reading the
balance of both accounts) to occur in one
partition and allow a savings deposit to
occur in another partition. However, exe-
cuting these transactions in parallel in
different partitions violates neither the
bank’s policy nor the one-copy serializ-
ability. Hence these transactions should
be allowed.

The class conflict analysis approach as-
sumes that transactions are divided into
classes as proposed in SDD-1 [Bernstein et

Computing Surveys, Vol. 17, No. 3, September 1985

al. 19801. A class may be a well-defined
transaction type, such as the “savings with-
drawal,” or it may be syntactically defined,
for example, the class containing all trans-
actions reading and writing a subset of
items a, b, and c.

Like transactions, classes are character-
ized by their readsets and writesets. The
readset of a class is the union of the read-
sets of all of its member transactions; sim-
ilarly, the writeset of a class is the union of
the writesets of all its member transactions.
As before, it is assumed that a class’s read-
set contains its writeset, so that NP-com-
plete problems are avoided. Two classes
conflict if one’s readset intersects the oth-
er’s writeset. A class conflict indicates a
potential read-write conflict between mem-
ber transactions of the classes. (A conflict
may not actually occur because the trans-
actions’ readsets and writesets may be
proper subsets of the classes’ readsets and
writesets.)

When a failure occurs, each partition
group must decide what classes of transac-
tions it will execute so as to avoid potential
conflicts with transactions executed in
other partitions. As a first step, it must
decide what classes are “assigned” to its
partition as well as those that are assigned
to the other partitions. For example, if
classes are executable at specific sites, the
classes assigned to a partition would be
those executable at sites within the parti-
tion. Note that classes may be assigned
to more than one partition, and there may
be conflicts between classes in different
partitions.

The second step for each partition is to
analyze the assignment and discover the
class conflicts that can lead to nonserializ-
able executions. The analysis uses a graph
model similar to the precedence graph used
in the Optimistic Protocol, except that
where precedence graphs give the actual
orderings between conflicting transactions,
class conflict graphs give all potential or-
derings between conflicting classes. A sim-
plified version of the model is defined
below.

A node of the class conflict graph rep-
resents the occurrence of a given class
in a given partition. Edges are drawn be-
tween occurrences of conflicting classes

Consistency in Partitioned Networks 357

PARTITION 1 PARTITION 2

Figure 8. Potential conflict indicated by multiparti-
tion cycles in class conflict graph.

according to the rules given below. Let Ci
and Cj be classes such that READSET
n WRITESET is not empty.

(1) If Cj and Cj are in the same partition,
then a pair of edges pointing in opposite
directions connects them.

(2) If Ci and Cj are in different partitions,
then a directed edge extends from Ci
t0 Cj.

The direction of the edges indicates the
possible logical orderings of transactions
from conflicting classes. In particular, in
the case of classes Ci and Cj in Rule (2), the
transactions of Ci cannot logically succeed
those of Cj because Ci’S transactions cannot
read the updates of Cj’s transactions.
Therefore the only order possible is that all
transactions of Ci precede all transactions
of Cj, as indicated by the single directed
edge.

Example. Figure 8 is a class conflict
graph for the banking example for two par-
titions. Boxes denote classes. Readsets are
shown above the line, and writesets, below.
Data items s, c, and i are the savings ac-
count, the checking account, and the inter-
est rate, respectively. Classes Cd and C,
include the savings deposit transactions
and checking withdrawal transactions dis-
cussed in Section 1. Class Ci transactions
change the interest rate, class C, transac-
tions add an interest payment to the

Computing Surveys, Vol. 17, No. 3, September 1985

358 ’ S. B. Davidson et al.

savings account, and class C, transactions
are read only.

The third step in the analysis is to
identify those assignments that could lead
to nonserializable executions. Cycles play a
key role here, but not all cycles are bad.
Among class occurrences in the same
partition, cycles are both common and
harmless, since the concurrency control
algorithm operating in the partition will
prevent nonserializable executions. On the
other hand, cycles spanning multiple (>l)
partitions are not harmless, since there is
no mechanism preventing them in an exe-
cution. Hence multipartition cycles indicate
the potential for nonserializable executions.
In the example, if transactions from classes
Ci, C,, and C, execute in that order in
partition 1 and a transaction from CS exe-
cutes in partition 2, the result is serializa-
ble. (This can be checked by constructing
the precedence graph for the execution.)

Whenever the preliminary class assign-
ment yields a (multipartition) cyclic graph,
further constraints on transaction process-
ing must be imposed. The most straightfor-
ward approach is to delete classes from
partitions until the class conflict graph is
rendered multipartition acyclic. In the
above example, one of Ci, C,, CL, or C,
must be deleted. For availability reasons, it
is desirable to delete a minimum set of
classes. Not surprisingly, this is an NP-
complete problem.

Although this discussion has assumed
that the complete state of the network is
known to all partitions, this assumption is
not required in applying class conflict anal-
ysis. Wright discusses some modifications
to the basic algorithm that work with in-
complete knowledge of the network status
and some refinements that afford more
availability than the analysis presented
here [Wright 19831.

3.3 Discussion

3.3.1 Optimistic versus Pessimistic

An appropriate cost model is one basis
for comparing the two approaches. The
model should include oveyhead, the cost

of repairing inconsistencies, and the cost
of lost opportunities. In the following,
costs common to all approaches, such as
the propagation of updated values, are
omitted.

Optimistic policies have two sources of
overhead. The first is the log, which must
be maintained while the system is parti-
tioned, recording the readset and writeset
of each transaction in order to construct
the precedence graph, and recording suffi-
cient information to roll back transactions.
Many database systems already maintain a
log, called an undo log, for rolling back
transactions in case of site failures or trans-
action failures (e.g., deadlocks) [Gray et al.
19811. This same log can be used to roll
back conflicting transactions in a parti-
tioned system. In order to construct the
graph, however, undo logs must be aug-
mented with records of transactions’ read-
sets (which are normally not recorded since
they are not needed to roll back a single
transaction). This increases the complexity
of the logging algorithms, but it does not
significantly increase the cost of logging in
most systems.

The second and most significant source
of overhead in optimistic strategies is the
conflict detection algorithm, which con-
structs the graph, checks the graph for cy-
cles, and then selects transactions to roll
back. Graph construction requires a single
pass over the entire log, which can be quite
expensive for a partition of long duration.
The selection algorithm can be made arbi-
trarily expensive, depending on the quality
of heuristics used. As mentioned in the
description of the Optimistic Protocol, the
best heuristics require time O(N”.8’), where
N is the number of transactions. However,
linear time heuristics often yield acceptable
solutions.

The cost of repair in an optimistic ap-
proach is simply the rollback rate times the
cost of rolling back a transaction. We have
already discussed rollback rate. The roll-
back cost is often a significant fraction of
the transaction’s execution cost, and may,
in fact, exceed the execution cost if the
transaction has external side effects (e.g., a
customer may be entitled to compensa-
tion if his or her reservation is canceled,

Computing Surveys, Vol. 17, No. 3, September 1985

Consistency in Partitioned Networks 359

or a series of transactions may need to be
executed to compensate for a single rolled-
back transaction). Consequently, the roll-
back rate must be kept reasonably small
(certainly less than 20 percent) if
optimistic approaches are to be cost
effective.

The goal of optimistic approaches is to
minimize lost opportunity, the cost associ-
ated with needlessly delaying a transaction.
These costs can be substantial when user
satisfaction is important as, for example,
in a banking application. Lost opportu-
nities still occur in these approaches
because of the allocation of resources to
transactions that are destined to be rolled
back. Such transactions may displace valid
transactions during the partitioning, and
rolling them back may cause further delays
after the partitions are reconnected. Still,
for most applications, we speculate that
other costs dominate.

Pessimistic approaches have no repair
costs and, except for class conflict analysis,
almost no overhead. Even in class conflict
analysis, the overhead is likely to be sub-
stantially less than in an optimistic strat-
egy, because although conflict analysis and
conflict detection are procedurally similar,
the number of predeclared classes in con-
flict analysis is likely to be substantially
less than the number of transactions in
conflict detection.

The major cost of a pessimistic approach
is, of course, the cost of lost opportunities.
Included in this cost are not only opportu-
nities lost to real partitioning but also op-
portunities lost to “apparent” partitionings,
for example, site failures that are indistin-
guishable from real partitionings. In many
systems, apparent partitionings occur more
frequently than real partitionings; there-
fore they must be included in any cost
analysis.

In summary, the cost of an optimistic
strategy is the overhead of conflict detec-
tion plus the repair cost, whereas the cost
of a pessimistic strategy is the cost of op-
portunities lost to real and apparent parti-
tionings. Unfortunately, except for repair
costs, informed estimates for these costs
are not easily obtained. No one has meas-
ured the overhead associated with any of

the strategies, and the cost of lost op-
portunities is hard to quantify (although
one component in a pessimistic strategy is
the cost of underutilization of processing
resources).

3.3.2 Combining Strategies

Instead of using one strategy during a par-
titioning, strategies can be combined ver-
tically over time; the system could start out
using one strategy and switch to another as
circumstances dictate. For example, the
number of transactions rolled back in the
Optimistic Protocol has been observed to
increase roughly quadratically with time.
In fact, the expected number of transac-
tions rolled back can be estimated with a
formula involving the number of transac-
tions processed within the partition, the
number of data items in the database, and
certain other parameters modeling the type
of transactions being executed [Davidson
19821. Since it is usually impossible to pre-
dict how long a partitioning will last, the
database administrator could then set a
ceiling on the rollback rate (say 10 percent)
and request that the Optimistic Protocol be
used only until this ceiling were reached. If
this ceiling was reached, the system could
switch to a more pessimistic approach, such
as primary site, for the remainder of the
failure. Of course, there is no guarantee
that the subsequent transactions would not
also be rolled back since they could be
connected by dependency edges to trans-
actions that had already executed. These
transactions would still have to be included
in the construction of the precedence
graph, and considered for possible rollback,
to guarantee serializability. The rollback
rate, however, would be held at a more
acceptable level.

Strategies can also be combined horizon-
tally over time [Skeen 1982c]. One ap-
proach is to assign items different levels of
consistency. Items in level 0 (the highest
level) are immutable during a partitioning,
items in level 1 are updated according to a
pessimistic strategy, and items in level 2
are updated according to an optimistic
strategy. Updates to level 1 items are glob-
ally consistent and guaranteed to persist,

Computing Surveys, Vol. 17, No. 3, September 1985

360 . S. B. Davidson et al.

whereas updates to level 2 items are consis-
tent within the partition but may not be
globally consistent and, hence, are subject
to rollback. Although a transaction may
update items in only one level, it may read
items of the same level and higher.

Another way to combine approaches hor-
izontally is to divide transactions, instead
of items, into groups. For each partition,
transactions are divided into two groups:
high-priority transactions that cannot be
rolled back and low-priority transactions
that can. Class conflict analysis is used to
determine a group of high-priority trans-
actions for each partition. The low-priority
group for a partition consists of all trans-
actions not writing an item read by a high-
priority transaction in the same partition.
(A low-priority transaction, however, can
write an item read by a high-priority trans-
action in a different partition.) When par-
titions are reconnected, the Optimistic
Protocol is used to construct a prece-
dence graph containing all transactions;
however, only low-priority transactions are
liable to rollback. (An approach similar to
this is used by Apers and Weiderhold
[1984].)

4. SEMANTIC APPROACHES

The first three approaches presented in this
section are optimistic, and illustrate differ-
ent ways of using semantics to decrease
conflict. The first approach, log trans-
formations, uses the standard notion of
correctness (serializability) but uses the
semantics of transactions to check serial-
izability. The second approach, weak con-
sistency, slightly relaxes the standard
notion of serializability in order to enrich
the set of transactions allowed in a parti-
tioned system, and uses the semantics
of the application to determine when
serializability can be relaxed. The third
approach, Data-Patch, abandons seri-
alizability altogether, and uses an
application-specific definition of correct-
ness instead. The last approach, general
quorum consensus, is pessimistic. A new
correctness criterion is defined on the basis
of an abstract data type definition of data
items, and type-specific information is used
to increase the availability of data.

This section ends with a brief discussion
of some other proposed ideas for increasing
availability.

4.1 Optimistic Strategies

4.1.7 Log Transformations [Blaustein et al.
19831

This approach is similar to the Optimistic
Protocol. During the partitioning, logs are
kept of which transactions were executed
and in what order. After reconnection, a
rerun log is constructed, which indicates
what should be reflected as having hap-
pened during the failure. To achieve this,
transactions in each group may have to be
rolled back and rerun. It differs in that
transactions are predefined, and semantic
properties of pairs of transactions are de-
clared to avoid needlessly rolling back and
rerunning transactions. These properties
can include commutativity (7’i Tj = Tj Ti)
and overwriting (Ti Ti = Tj). There is also
a notion of “absolute time” in each group
during the failure so that transactions can
be merged based on the time at which they
were executed.

Example. Suppose that during a parti-
tion, PI has executed Tz , T4, T6 and that
P2 has executed Tl, T3, T,, where the
subscripts indicate the absolute timing of
the transactions. The rerun log would be
Tl, T,, T3, T4, T5, Ts. If we ignored any
semantic properties of transactions, merg-
ing the database at PI would involve rolling
back transactions T2, T4, T6 and reexecut-
ing the rerun log. If we assume that rolling
back transaction T can be achieved by
running an inverse transaction T-l, then
the entire merging operation at P, can be
represented by the rollback log T;l, T;‘,
T;l, followed by the redo log. Similarly, the
merge operation at Pz involves executing
the rollback log TC1, T:l, T;‘, followed by
the redo log. Let us call the combined roll-
back, redo log the merge log.

If we know that Tl commutes with T2,
then the merge log at PI can be reduced to

T,?, T;‘, TI , Tc,, T-, , T5, Ts.

To see that the result of executing PI’s
merge log is equivalent to the result of

Computing Surveys, Vol. 17, No. 3, September 1985

Consistency in Partitioned Networks 9 361

executing Tl, T2, T3, T4, T5, Ts in order,
consider the entire sequence of transac-
tions executed by PI (i.e., the original exe-
cution followed by the merge log):

7’2, T4, T,, Ti?, K’, TI, 7’3, T4, T5, Ts.

Since T6, T;l and T4, T;’ are equivalent
to the null transaction, the above is equiv-
alent to

7’2, Tl, T3, T4, Ts, Ts.

By the commutativity of Tl and T2 this is
equivalent to the desired sequence.

If in addition we know that Tl and T3
commute with T4 and T,, and that T6
overwrites T5, then the P, merge log can be
further reduced to

(i.e., after the partition we only have to run
Tj, T3 without rolling back any transac-
tions), At P2, this same semantic informa-
tion only reduces the merge log to

W, X1, T2, Ts, T4, Ts.

The process of reducing the size of the
merge log is called log transformation. The
process can be automated with the aid of
a graph formalism, which represents merge
logs as graphs, and performs each log trans-
formation as a graph transformation [Blau-
stein et al. 19831.

One advantage of log transformations is
that merge processes at the different sites
are independent of each other. That is, as
each site finds out about transactions that
were executed elsewhere, it can proceed to
integrate them locally, regardless of what
the other sites are doing. This idea has been
used by Sarin et al. [1985] to extend log
transformations as a general mechanism to
achieve mutual consistency without guar-
anteeing serializability; network partitions
and site failures do not have to be detected
[Sarin et al. 19851. A total ordering is im-
posed on updates using timestamps. Each
site’s data copy is only required to reflect
the updates seen by the site, executed in
timestamp order. If an out-of-sequence up-
date is received (i.e., one whose timestamp
is less than the timestamp of the most
recent update seen by the site), log trans-
formations are used to achieve the correct

value for the copy. Serializability is not
guaranteed since the copies read by a trans-
action may only reflect some incomplete
subset of updates to the data item.

This approach may be useful in an envi-
ronment where failures are common and
communications unreliable.

4.7.2 Weak Consistency [Garcia and
Weiderhold 19821

Garcia and Weiderhold [1982] argue that
conventional correctness criteria-in par-
ticular, serializability-may be stronger
than needed for many read-only transac-
tions. Since such transactions do not
change the database state, their execution
cannot generate inconsistencies. Relaxing
the serializability constraint is especially
attractive for partitioned systems, since it
would allow a richer mix of read-only trans-
actions. (The original motivation for a
weaker correctness criterion was to speed
up the processing of read-only transactions
in a distributed system.) Since read-only
transactions occur frequently in most sys-
tems, by allowing a richer mix of them one
can substantially increase the number of
transactions executed while partitioned.

Read-only transactions are divided into
two classes: those requiring strong consist-
ency and those requiring weak consistency.
A strongly consistent transaction is pro-
cessed in the normal fashion: Its execution
must be serializable with respect to update
transactions and other strongly consistent
transactions. A weakly consistent transac-
tion must see a consistent database state
(the result of a serializable execution of
update transactions), but its execution need
not be serializable with respect to other
read-only transactions. (Weak serializabil-
ity is stronger than degree 2 or 1 consist-
ency as defined by Gray et al. [1976].
Specifically, with degree 2 or 1 consist-
ency, a read-only transaction can obtain
an inconsistent view of the database.) The
following example illustrates this.

Example. Consider again the banking
database of the first section with sites A
and B partitioned. The sequence of trans-
actions given in Figure 9 occurs. Notice that
the two update transactions, considered

Computing Surveys, Vol. 17, No. 3, September 1985

362 . S. B. Davidson et al.

SITE A SITE B
C: checking deposit of D: sauings deposit of

$50 $100

Aa : read checking and As : read checking and
savings accounts savings accounts

Figure 9. Nonserializable transaction execution al-
lowed with weakly consistent transactions.

alone, are serializable. In fact, since they
access different items, both C ; D and
D ; C are valid serialization orders. How-
ever, when the accounting transactions AA
and As are included, the execution is not
serir:izable. The database state read by AA
is pc>ssible only if C executes before D,
whert?s the state read by As is possible
only if D executes before C. (Both AA and
AB see a valid serialization order of the
updates; the problem is that they see dif-
ferent orders.)

If AA and Ae required only weak consist-
ency, the above execution would be “cor-
rect”: The update transactions alone are
serializable, and each weakly consistent
transaction sees the result of a serializable
execution of update transactions.

The use of different consistency levels
can be integrated with any of the syntactic
approaches discussed in the previous sec-
tion. In a pessimistic strategy, a transaction
requiring only weak consistency can be ex-
ecuted at any time in any partition, as long
as the partition contains copies of items
read by the transaction. The transaction
will always see a consistent database state
since all update transactions are guaran-
teed to be (globally) consistent. In an op-
timistic strategy, such a transaction sees a
consistent state only if it does not read the
result of an update transaction that is even-
tually rolled back.

The choice of a consistency level for a
read-only transaction depends on how the
information returned by the transaction is
used. An accounting transaction reporting
cash flow within a bank probably requires
strong consistency. Inventory reporting
and transactions computing summary sta-
tistics often need only weak consistency.

Fischer and Michael [1982] give an im-
portant application of weak serializability
in their algorithms for directory systems. A
directory supports only three types of
transactions: insert a unique item, list all
items, and delete an item. Mail systems,
calendar systems, and other familiar appli-
cations can be cast as directories. Exploit-
ing the property that the list operation
requires only weak consistency; they
give an algorithm allowing unrestricted
transaction processing in the presence of
communication failures, including but not
limited to failures partitioning the system.

4.7.3 Data-Patch [Garcia et al. 19831

Data-Patch is a tool that aids the DBA in
developing a program to automatically in-
tegrate divergent databases. As in the.%pre-
vious optimistic strategies, transactions are
executed “normally” during the failure. At
reconnection, the final database state is
constructed according to an integration
program. Serializability is no longer the
correctness criterion; rather, the integra-
tion program defines the “correct” final
database. This is based on the premise that
users may already have observed the effects
of a nonserializable execution; thus restor-
ing the database to a serializable state may
not be the most sensible thing to do. For
example, in an airline reservation system,
if a flight becomes overbooked, it may not
be desirable to cancel reservations since a
promise has been made to customers and
normal passenger cancellations could take
care of the problem.

The major design principle involved
is identifying image and plan relations.
Image relations are observable entities
or relationships, and must reflect that
in the final database. For example, in a
database for Girard bank, the relation
GIRARD(BRANCH, CASH, . . .) might be
used to record the amount of cash at each
branch. The value of CASH in each tuple
at recovery should reflect the actual
amount of cash at that branch. This might
be obtained as the latest value for CASH
in each partition group. Plan relations do
not represent observable entities, and the
DBA can therefore have more freedom in

Computing Surveys, Vol. 17, No. 3, September 1985

Consistency in Partitioned Networks 363

selecting the final values. In the next ex-
ample, ACCOUNT is a plan relation.

Example

ACCOUNT (CUSTOMER, BALANCE,. . .)
DEPOSIT (CUSTOMER, AMOUNT,

DATE, . . .)
WITHDRAWAL (CUSTOMER, AMOUNT,

DATE, . . .)

DEPOSIT and WITHDRAWAL are rec-
ords of account activity. If during a parti-
tion a customer overdraws his or her
account according to the records from each
group, he or she may be assessed a penalty
charge. Thus BALANCE would reflect the
sum of withdrawals and deposits to the
account, plus the penalty charge. If, on the
other hand, a customer is mistakenly as-
sessed a penalty charge because a DE-
POSIT did not appear during a failure, the
penalty charge may be dropped.

The above example shows that not only
must a final database state be chosen, but
corrective actions must also be specified.
That is, if integrity constraints art violated
after the image and plan relations have
been constructed, some sort of compensat-
ing or corrective action must be issued (e.g.,
a penalty for overdraft, as above).

The Data-Patch integration program is
defined through a set of rules that specify
how the integrated database can be ob-
tained from two databases that exist after
a partition. Some rules specify how differ-
ing facts are to be combined. For example,
consider a field that represents the location
of a ship. In this case, the DBA can select
a “latest value” rule: If the field has a
different value in each partition, use the
value with the latest timestamp in the in-
tegrated database. If the field represents
the number of reservations for a flight, the
“arithmetic rule” can be used: The inte-
grated value is the sum of the two parti-
tioned values minus the value that existed
when the partition started. Other rules
specify the corrective actions to be taken.
For instance, a rule might specify that if
the withdrawals exceed the deposits to an
account (after the integrated database has

been obtained), then a dunning letter
should be sent to the customer.

4.2 Pessimistic Strategies

4.2.1 General Quorum Consensus [Herlihy
19841

As the name suggests, general quorum
consensus extends the quorum voting al-
gorithm proposed by Gifford [1979] (see
Section 3.2). This approach to replicated
data management uses type information to
increase data availability. In addition, it
uses a novel correctness criterion and rep-
resentation of data items.

Each data item is viewed as an instance
of an abstract data type. An abstract data
type defines the set of operations supported
by items of that type. For example, a FIFO
(first-in, first-out) queue defines the oper-
ations ENQUEUE (append an element to
the end of the queue) and DEQUEUE (re-
move an element from the head of the
queue and return its value). Items of type
queue can only be accessed (read or written)
through the ENQUEUE and DEQUEUE
operations.

In addition to defining a set of opera-
tions, an abstract data type defines a
type-specific correctness criteria. This cor-
rectness criteria consists of two parts: a
serial specification and a behaviorial spec-
ification. The serial specification describes
the sequences of operations that are al-
lowed on data items of the given type. In
the FIFO queue example, a sequence of
ENQUEUE and DEQUEUE operations is
allowed only if the number of ENQUEUE
operations is greater than or equal to the
number of DEQUEUE operations in any
prefix of the sequence. This ensures that
DEQUEUE is never applied to an empty
queue. The behavioral specification de-
scribes the conflicts between operations
that limit concurrency. For example, al-
though ENQUEUE operations may always
be performed, DEQUEUE operations con-
flict with both ENQUEUE operations and
other DEQUEUE operations since the
value returned by a DEQUEUE operation
depends on the contents of the queue.

Computing Surveys, Vol. 17, No. 3, September 1985

364 l S. B. Davidson et al.

An interesting aspect of Herlihy’s ap-
proach is that each data item is represented
by its history, that is, the sequence of op-
erations that have been applied to the data
item since its creation. Each operation in
the history has an associated timestamp
that serves to uniquely identify the opera-
tion and determine its position in the his-
tory. For example, the history for some
queue Q might contain the following oper-
ations (with timestamps):

Q: {(ENQUEUE(3), 10036), (ENQUEUE(7),
10072), (DEQUEUE(), 10137),
(ENQUEUE(5), 10201), (DEQUEUE(),
21007), (ENQUEUE(5), 22137))

This sequence of operations results in a
queue containing two elements, both with
value 5.

Each copy of an item stores a subse-
quence, or subhistory, of the item’s entire
history. A copy’s subhistory is often incom-
plete owing to failures preventing the
receipt of certain operations. It is straight-
forward to merge subhistories of two or
more copies into a single, more complete
subhistory, however. In fact, the advan-
tage of representing items by their his-
tories over representing items by their
values is that incomplete subhistories can
be merged, whereas incomplete values typ-
ically cannot.

The basic idea behind the general quo-
rum consensus algorithm is to associate a
read quorum and write quorum with each
operation defined by an abstract type. For
operation OP, let ROP denote its read quo-
rum, and Wop denote its write quorum. The
execution of an operation OP on data item
D consists of three steps:

(1) The site executing OP requests subhis-
tories from at least RoP copies of D. If
less than ROP copies respond, the op-
eration cannot be executed.

(2) The executing site merges the subhis-
tories received into a more complete
subhistory. Using this merged subhis-
tory and the serial specification for the
type of D, it checks whether OP is
allowed and computes the value to be
returned to the user (if any).

(3) The executing site sends OP to at least
Wop copies. The copies append OP and
its timestamp to their subhistories.

The subhistory constructed in Step (2) may
be the complete history of the data item,
but this is not always required. What is
required is that the constructed subhistory
contain enough information to determine
whether OP is allowed and to determine
the value returned to the user.

The choice of read and write quorum
sizes is determined by the behavioral spec-
ification of the data type. If the behavioral
specification indicates that operation 01
can influence either the acceptability or the
return value of operation 02, then the quo-
rum sizes must be chosen so that Wo, +
Ro2 exceeds number of copies of the data
item. In this case the quorums are said to
intersect. This constraint ensures that the
subhistory constructed in Step (2) during
an execution of operation 02 will contain
all prior executions of operation 01.

Example. In the queue example, each
DEQUEUE and ENQUEUE operation
influences the value returned by a later
DEQUEUE operation. Hence the write
quorums of both ENQUEUE and DE-
QUEUE must intersect the read quorum of
DEQUEUE. On the other hand, neither
ENQUEUE nor DEQUEUE operations in-
fluence later ENQUEUE operations. Con-
sequently, the read quorum of ENQUEUE
need not intersect with any other opera-
tion’s write quorum. Given this informa-
tion, one possible assignment of quorums
for a queue with three copies is

&~QUEUE = 0, %NQUEUE = 1;

RDEQUEUE = 3, WDEQ”EUE = 3.

Note that this assignment allows EN-
QUEUE operations to occur concurrently
in different partitions. Other quorum vot-
ing schemes (namely, Gifford’s) would not
allow this.

General quorum consensus is an elabo-
rate protocol. Many extensions of the
above basic (and somewhat oversimplified)
scheme are discussed by Herlihy [1984,
19851. One particularly interesting exten-

Computing Surveys, Vol. 17, No. 3, September 1985

Consistency in Partitioned Networks l 365

sion allows quorums to be reassigned dy-
namically, according to detected failures
and recoveries. Recall that a similar tech-
nique was used in the Missing Writes Pro-
tocol [Eager and Sevcik 19831.

4.3 Other Ideas

Numerous ad hoc techniques for exploiting
the semantics of an application to increase
availability have been proposed. Many of
these can best be illustrated by examples.

The first example illustrates the idea of
splitting a data item [Hammer and Ship-
man 19801. In an airline reservation sys-
tem, let SEATS represent the number of
seats available on a particular flight. When
a partition occurs, PI creates SEAT& con-
taining 40 percent of the value of SEATS,
and PB creates SEATS2 containing 60 per-
cent of the value of SEATS (or other per-
centages reflecting the relative booking
rates for that flight). At recovery,

SEATS = SEATS, + SEATS2

would restore SEATS to its correct value.
The second example comes from Incom-

plete Information Systems [Davidson 1982;
Lipsky 19791. Suppose that we have a tuple
representing John Doe’s age as less than
30. During a partition, PI gathers more
information and concludes that his age is
between 20 and 30, while Pz concludes it to
be between 15 and 25. At recovery, the
intersection of these ranges, 20 to 25, may
be taken as John Doe’s age.

The last example illustrates the use of
failure-mode integrity constraints. Failure-
mode integrity constraints are constraints
that are only checked when the system is
partitioned. Recall the banking example of
Figure 2, where overdrafts on the checking
account were allowed as long as checking
balance + saving balance 2 0. The example
described a scenario where this constraint
was violated during a partitioning. This
anomaly could have been avoided by en-
forcing a failure-mode integrity constraint
disallowing checking account overdrafts
when the system is partitioned.

These ideas can be used with a pessimis-
tic approach such as primary copy to allow

more transactions to be executed: A portion
of SEATS would be available in each group,
although the actual or current value for
SEATS could not be obtained because of
possible bookings in the other group. The
flight would never be overbooked, however,
if neither group sold more than their allot-
ment of seats. It can also be used with
optimistic approaches such as the Optimis-
tic Protocol and Data-Patch to avoid con-
flict and possible transaction rollbacks. In
the Optimistic Protocol, conflicts are
mainly caused by updates to the same data
item. By splitting data items and recombin-
ing at recovery, this can be avoided. In
Data-Patch, integration becomes easier
since the value for SEATS can simply be
computed without canceling reservations.

5. ATOMIC COMMITMENT

A transaction on a distributed database
typically executes at several sites. In order
to ensure the “all or nothing” property of
the transaction, the executing sites must
unanimously agree to commit or to abort
the transaction. Until now we have as-
sumed that this agreement, known as
atomic commitment, can be achieved in a
partitioned system. Let us now examine
how reasonable this assumption is.

Viewed abstractly, in a commitment pro-
tocol each participant first votes to “ac-
cept” or “reject” the transaction according
to its ability to process the transaction and
then decides whether to commit or abort
based on the voting. Commitment normally
requires unanimous acceptance.7 Of course,
all decisions must agree.

The two-phase commit protocol is a
straightforward implementation of the
above [Gray 19781. In the first phase, a
designated participant, the coordinator, so-
licits the votes from its cohorts. In the
second phase, it decides on the basis of the
votes and then sends the decision to all
participants. In the course of the protocol,
each participant voting “accept” goes
through three distinct states: an uncommit-
ted state in which it has not voted, an in

‘Some protocols for fully replicated databases require
only acceptance by a majority.

Computing Surveys, Vol. 17, No. 3, September 1985

366 l S. B. Davidson et al.

doubt state in which it has voted but does
not know the result of the voting, and a
decision state in which it knows the com-
mit/abort decision. (A participant voting
“reject” does not occupy the in doubt state
since it knows the eventual outcome.)

Consider the consequences of a partition-
ing occurring during the execution of the
two-phase commit protocol. In each parti-
tion the participants, acting together, will
attempt to decide the outcome on the basis
of their states. If the partition contains the
coordinator, a decided participant, or an
uncommitted participant, a consistent de-
cision can be reached (in the case of an
uncommitted participant, abort will be cho-
sen). However, a partition containing only
in-doubt participants and lacking the co-
ordinator cannot safely decide: The partic-
ipants cannot commit since they do not
know the outcome of the voting, and they
cannot abort since they may contradict the
decision of the coordinator. Hence these
sites must wait until reconnection before
deciding, and the protocol (and associated
transaction) is said to be blocked at those
sites.

ticipants) will be blocked in the event of a
partitioning by introducing extra phases
[Skeen 1982a, 1982b, 19831. Its principal
advantage is that it is also resilient to site
failures and (nonpartitioning) communi-
cation failures. Both protocols have draw-
backs, however. Although the decentralized
protocol decreases the probability that a
partitioning will occur while sites are in the
in doubt state, it increases the expected
number of blocked sites if a partitioning
should occur. The quorum protocol actually
increases the chance that some site will be
blocked in the event of a partitioning (al-
though the expected number of blocked
sites decreases).

Given that the two-phase commit proto-
col occasionally blocks, the interesting
question then is: Are there any nonblocking
protocols for partitionings? The answer is
no: Even under the most favorable, realistic
partitioning assumptions, there are no non-
blocking protocols [Skeen 1982b]. The sit-
uation is even worse if sites can fail during
a partitioning; in this case there is no pro-
tocol that guarantees that even a single site
will be able to decide.

How the partition strategies discussed in
Sections 3 and 4 treat blocked transactions
depends on whether the strategy is pessi-
mistic or optimistic. In a pessimistic strat-
egy, the data items at undecided sites must
be rendered inaccessible until reconnec-
tion. In an optimistic strategy more flexi-
bility is possible. A partition can tentatively
commit or abort a blocked transaction. If
its decision is inconsistent with other de-
cisions, it can resolve this in the same way
that it resolves other inconsistencies, by
rolling back the offending transaction and
all dependent transactions. Since rolling
back is fairly expensive, a tentative decision
should be made only if it has a high prob-
ability of being correct.

6. CONCLUSION

6.1 Guidelines for Selecting a Partition
Strategy

Since it is impossible to eliminate block- Research in distributed databases has been
ing, it is desirable to minimize it. Several criticized for devising strategies for isolated
protocols have been proposed that, under problems [Mohan 19801. In particular, con-
appropriate partitioning assumptions, currency control mechanisms and partition
block less than the two-phase commit failure protocols are highly interdependent
protocol. One protocol, the decentralized and should not be considered in isolation
two-phase commit protocol, reduces the from each other. For example, a voting
likelihood of blocking by decreasing the partition failure protocol should not be
time a site spends in the in doubt state used with a primary site concurrency
[Skeen 1982c]. This is accomplished by control mechanism since the primary site
having the participants send their votes strategy can already handle partition fail-
directly to each other, bypassing the coor- ures. (See Davidson [19821 for a discussion
dinator. Another protocol, the quorum com- of the relationship between the Optimistic
mit protocol, reduces the probability that a Protocol and common forms of concurrency
large partition (one consisting of many par- control.) It is also important to consider

Computing Surveys, Vol. 17, No. 3, September 1985

Consistency in Partitioned Networks l 367

the performance of proposed strategies, al-
though it is difficult to obtain informed
estimates on performance trade-offs. In
some cases this results from the fact that
an appropriate model is difficult to con-
struct; in others it results from the fact
that the mechanism is highly application
dependent.

With these cautions in mind, we group
the factors that influence the choice of a
strategy into three areas:

Environment. Included here are the
properties of the network and the nature of
the partitionings. An important considera-
tion is whether partitionings are caused by
failures or are the result of anticipated
events. In the latter case, complete infor-
mation about the characteristics of the par-
titioning, including duration and network
topology, may be known, and this can be
exploited in some strategies (in particular,
class conflict analysis).

However, most systems partition because
of failures, and in this case the robustness
of the strategy may be an important factor.
For example, a primary site strategy would
be a poor choice if site failures cannot be
distinguished from communication fail-
ures. Also, class conflict analysis (as pre-
sented) cannot be used if communication
failures do not always result in clearly de-
lineated partitions.

The duration of the partitioning is also
important. Long failures tend to generate
many conflicts between transactions in dif-
ferent partitions; in this case, a pessimistic
strategy is a better choice than an optimis-
tic one.

Work Load. Two important work-load
characteristics are average transaction
length and transaction variance. Optimistic
policies work better when transactions are
short and variance small.

Another important work-load factor is
locality of reference: Do updates to given
data items tend to occur at a certain site?
If so, a primary site strategy will not pro-
hibit many transactions and availability
will still be good. The rollback rate in the
Optimistic Protocol will also be reduced,
but the transactions will still have to be
tested for conflict.

Application Specificity. These factors fall
into two groups. The first are requirements
placed by the application on transaction
processing. Two important questions are

(1)

(2)

Can transaction processing be tempo-
rarily halted for recovery purposes? If
not, a pessimistic approach should be
adopted which merely requires the for-
warding of updates to merge the data-
bases.
Can transaction processing be limited
in parts of the database, or is availabil-
ity a premium? If the latter is the case,
a more optimistic approach should be
used.

The second group includes semantic con-
siderations. Relevant questions here are

(1) Can transactions be rolled back? That
is, do they have an inverse? If the latter
is the case, either conflict should be
avoided totally, or the divergent data-
bases should be patched up by using
compensating actions if necessary to
achieve correctness.

(3)

Is serializability a concern, or is a more
procedural definition of “correctness”
in the final database state acceptable?
If serializability is not a major concern,
a Data-Patch approach can be used.
Should a partitioned system be ex-
pected to behave exactly as an unpar-
titioned system? For example, even if
serializability is the “normal” correct-
ness criterion, under extenuating cir-
cumstances (such as partition failures)
a more lenient definition could be used.

6.2 Future Directions

Partitioned operation is still very much an
active research area. We comment briefly
on several interesting research directions.

One obvious deficiency in our current
knowledge of partition strategies is the lack
of any performance data on how well they
work. Few strategies have been imple-
mented and none tested on a representative
application. Clearly, more experience with
the proposed strategies is needed before we
can understand the performance trade-offs
between them.

Computing Surveys, Vol. 17, No. 3, September 1985

368 . S. B. Davidson et al.

Another important area of research is the
adaptation of these strategies to accom-
modate more general processing models, in
particular, nested transactions (and the
related concept of multilevel atomicity
[Garcia 1983; Lynch 19831). Nested trans-
actions arise in general purpose distrib-
uted programming environments such as
ARGUS [Liskov and Schleifer 19831.

Algorithms for detecting and analyzing
network partitions have also not been de-
veloped. Since several of the strategies re-
quire that the failure initially be recognized,
this is an important area to address.

ACKNOWLEDGMENTS

This material is based on work partially supported by
the National Science Foundation under grant ECS-
8303146, and a fellowship from the IBM Corporation.

The authors are grateful to the referees and tech-
nical editor for suggesting numerous technical and
stylistic improvements to this paper.

REFERENCES

Aiken Computation Laboratory, Harvard Univ.,
Cambridge, Mass.

BLAUSTEIN, B. T., GARCIA, H., RIES, D. R., CHILEN-
SKAS, R. M., AND KAUFMAN, C. W. 1983.
Maintaining replicated databases even in the
presence of network partitions. In Proceedings of
the IEEE 16th Electrical and Aerospace Systems
Conference (Washington, D.C., Sept.). IEEE,
New York, pp. 353-360.

FISCHER, M. J., AND MICHAEL, A. 1982. Sacrificing
serializability to attain high availability of data
in an unreliable network. In Proceedings of the
1st ACM SIGACT-SIGMOD Symposium on Prin-

DAVIDSON, S. B. 1982. An optimistic protocol for

ciples of Database Systems (May). ACM, New

partitioned distributed database systems. Doc-
toral dissertation, Dept. of Electrical Engineering

York, pp. 70-75.

and Computer Science, Princeton Univ., Prince-
ton, N.J. (Oct.).

DAVIDSON, S. B. 1984. Optimism and consistency in
partitioned distributed database systems. ACM
Trans. Database Syst. 9, 3 (Sept.), 456-481.

EAGER, D. L., AND SEVCIK, K. C. 1983. Achieving
robustness in distributed database systems. ACM
Trans. Database Syst. 8, 3 (Sept.), 354-381.

EL ABBADI, A., SKEEN, D., AND CRISTIAN, F.
1985. An efficient, fault-tolerant algorithm for
replicated data management. In Proceedings of
the 5th ACM SIGACT-SIGMOD Symposium on
the Principles of Database Systems (Portland,
Ore., Mar.). ACM, New York, pp. ‘215-229.

ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND
TRAIGER, I. L. 1976. The notions of consistency
and predicate locks in a database system. Com-
mun. ACM 19, 11 (Nov.), 624-633.

ALSBERG, P. A., AND DAY, J. D. 1976. A principle

APERS, P. M., AND WIEDERHOLD, G. 1984. Transac-
tion classification to survive a network partition.
Unpublished manuscript, Computer Science
Dept., Stanford Univ., Stanford, Calif. (July).

for resilient sharing of distributed resources. In

BERNSTEIN, P. A., AND GOODMAN, N. 1980. Time-

Proceedings of the 2nd International Conference

stamp-based algorithms for concurrency control
in distributed database systems. In Proceedings

on Softmare Engineering (San Francisco, Oct.).

of the 6th Internationl Conference on Very Large
Data Buses (Cannes, France, Sept. 9-11). IEEE,
New York, pp. 285-300.

IEEE Computer Society, Long Beach, Calif., pp.
627-644.

GARCIA, H. 1982. Elections in a distributed comput-
ing system. IEEE Trans. Comput. C-31, 1 (Jan.),
48-59.

GARCIA, H. 1983. Using semantic knowledge for
transaction processing in a distributed database.
ACM Trans. Database Syst. 8, 2 (June), 186-213.

GARCIA, H., AND WEIDERHOLD, G. 1982. Read-only
transactions in a distributed database. ACM
Trans. Database Syst. 7, 2 (June), 209-234.

GARCIA, H., ALLEN, T., BLAUSTEIN, B., CHILENSKAS,
R. M., AND RIES, D. R. 1983. Data-Patch:
Integrating inconsistent copies of a database after
a partition. In Proceedings of the 3rd IEEE Sym-
posium on Reliability in Distributed Software and
Database Systems (Oct.). IEEE, New York, pp.
38-48.

GIFFORD, D. K. 1979. Weighted voting for replicated
data. In Proceedings of the 7th Symposium on
Operating Systems Principles (Pacific Grove,
Calif., Dec.). ACM, New York, pp. 150-162.

GIFFORD, D. K., AND SPECTOR, A. 1984. The TWA
reservation system. Commun. ACM 27, 7 (July),
650-665.

BERNSTEIN, P. A., AND GOODMAN, N. 1981. Con
currency control in distributed database systems.
ACM Comput. Suru. 13,2 (June), 185-221.

BERNSTEIN, P. A., AND GOODMAN, N. 1983. The
failure and recovery problem for replicated data-
bases. In Proceedings of the 2nd ACM Symposium
on Principles of Distributed Computing (Mon-
treal, Quebec, Aug.). ACM, New York, pp. 114-
122.

BERNSTEIN, P. A., SHIPMAN, D. W., AND ROTHNIE,
J. B. 1980. Concurrency control in a system for
distributed databases (SDD-1). ACM Trans.
Database Syst. 5, 1 (Mar.), 18-51.

BLAUSTEIN, B. T. 1981. Enforcing database asser-
tions: Techniques and applications. TR-21-81,

GOODMAN, N., SKEEN, D., CHAN, A., DAYAL, U., Fox,
S., AND RIES, D. 1983. A recovery algorithm for

Computing Surveys, Vol. 17, No. 3, September 1985

Consistency in Partitioned Networks 369

a distributed database system. In Proceedings of
the 2nd ACM Symposium on Principles of Data-
base Systems (Atlanta, Ga., Mar.). ACM, New
York, pp. 8-15.

GRAY, J. N. 1978. Notes on data base operating
systems. IBM Res. Rep. RJ2188 (Feb.). Also pub-
lished in Operating Systems: An Advanced Course,
R. Bayer, R. M. Graham, and G. Seegmuller, Eds.
Springer-Verlag, Berlin and New York, 1979, pp.
393-481.

GRAY, J. N., LORIE, R. A., PUTZOLU, G. R., AND
TRAICER, I. L. 1976. Granularity of locks and
degrees of consistencv in a shared database. In
Modeling in Database Management Systems,
G. M. Niiisen. Ed. Elsevier North-Holland. New
York, pp: 3651394.

GRAY, J. N., MCJONES, P., BLASGEN, M., LINDSAY,
B., LORIE, R., PRICE, T., PUTZOLU, F., AND
TRAIGER, I. 1981. The recovery manager of the
System R database manager. ACM Comput. Surv.
23, 2 (June), 223-242.

HAMMER, M. M., AND SHIPMAN, D. W. 1980. The
reliability mechanisms of SDD-1: A system for
distributed databases. Computer Corporation of
America Tech. Rep. CCA-80-04 (Jan.). (A shorter
version appears in ACM Trans. Database Syst. 5,
4 (Dec.), 431-466.)

HERLIHY, M. P. 1984. General quorum consensus: A
replication method for abstract data types. Tech.
Rep. CMU-CS-84-164, Dept. of Computer Sci-
ence, Carnegie-Mellon Univ., Pittsburgh, Pa.
(Dec.).

HERLIHY, M. P. 1985. Using type information to
enhance the availability of partitioned data. Un-
published manuscript, Dept. of Computer Sci-
ence, Carnegie-Mellon Univ., Pittsburgh, Pa.
(Apr.).

KOHLER, W. 1981. A survey of techniques for syn-
chronization and recovery in decentralized com-
puter systems. ACM Comput. Surv. 13, 2 (June),
149-184.

KUNG, H. T., AND ROBINSON, J. T. 1981. On opti-
mistic methods for concurrency control. ACM
Trans. Database Syst. 6, 2 (June), 213-226.

LAMPORT, L. 1978. Time, clocks and the ordering of
events in a distributed system. Commun. ACM
21, 7 (July), 558-565.

LIPSKI, W. 1979. On semantic issues connected with
incomplete information databases. ACM Trans.
Database Syst. 4, 3 (Sept.), 262-296.

LISKOV, B., AND SCHEIFLER, R. 1983. Guardians and
actions: Linguistic support for robust, distributed
programs. ACM Trans. Program. Lang. Syst. 5,3
(July), 381-404.

LYNCH, N. A. 1983. Multilevel atomicity-A new
correctness criterion for distributed databases.
ACM Trans. Database Syst. 8, 4 (Dec.), 484-502.

MINOURA, T., AND WIEDERHOLD, G. 1982. Resilient
extended true-copy token scheme for a distrib-
uted database system. IEEE Trans. Softw. Eng.
SE-8, 3 (May), 173-189.

MOHAN, C. 1980. Distributed data base manage-
ment: Some thoughts and analyses. In Proceed-
ings, ACM Annual Conference (Nashville, Tenn.,
Oct.). ACM, New York, pp. 399-410.

PAPADIMITRIOU, C. H. 1979. The serializability of
concurrent database updates. J. ACM 26,4 (Oct.),
631-653.

PARKER, D. S., AND RAMOS, R. A. 1982. A distrib-
uted file system architecture supporting high
availability. In Proceedings of the 6th Berkeley
Workshop on Distributed Data Management ana’
Computer Networks (Pacific Grove, Calif., Feb.).
Lawrence Berkeley Laboratory, University of
California, Berkeley, Calif., pp. 161-183.

PARKER, D. S., POPEK, G. J., RUDISIN, G., STOUGH-
TON, A., WALKER, B., WALTON, E., CHOW, J.,
EDWARDS, D., KISER, S., AND KLINE, C.
1983. Detection of mutual inconsistency in dis-
tributed systems. IEEE Trans. Softw. Eng. 9, 3
(Mad.

POPEK, G., WALKER, B., CHOW, J., EDWARDS, D.,
KLINE, C., RUDISIN, G., AND THIEL, G.
1981. Locus: A network transparent, high reli-
ability distributed system. In Proceedings of the
8th ACM Symposium on Operating Systems Prin-
ciples (Pacific Grove, Calif., Dec.). ACM, New
York, pp. 1699177.

ROTHNIE, J. B., AND GOODMAN, N. 1977. A survey
of research and development in distributed data-
base management. In Proceedings of the 3rd
International Conference on Very Large Data
Bases (Tokyo, Japan, Oct. 6-S). IEEE, New York,
pp. 48-61.

SARIN, S., BLAUSTEIN, B., AND KAUFMAN, C. 1985.
System architecture for partition-tolerant dis-
tributed databases. IEEE Trans. Comput.
C-34, 12 (Dec.), 1158-1163.

SKEEN, D. 1982a. A quorum-based commit protocol.
In Proceedings of the 6th Berkeley Workshop on
Distributed Data Management and Computer
Networks (Pacific Grove, Calif., Feb.). Lawrence
Berkeley Laboratory, Univ. of California, Berke-
ley, Calif. pp. 69-80.

SKEEN, D. 1982b. Crash recovery in a distributed
database system. Doctoral dissertation and ERL
Memo M82/45, Dept. of Electrical Engineering
and Computer Science, University of California,
Berkeley (May).

SKEEN, D. 1982c. On network partitioning. In Pro-
ceedings of the IEEE Computer Software and
Applications Conference (COMPSAC) (Nov.).
IEEE, New York, pp. 454-455.

SKEEN, D., AND STONEBRAKER, M. 1983. A formal
model of crash recovery in a distributed system.
IEEE Trans. Softw. Eng. SE-g, 3 (May), 219-
228.

SKEEN, D., AND WRIGHT, D. 1984. Increasing avail-
abilitv in oartitioned networks. In Proceedings of
the 3rd ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems (Apr.). ACM, New
York, pp. 290-299.

Computing Surveys, Vol. 17, No. 3, September 1985

370 l S. B. Davidson et al.

STONEBRAKER, M. 1979. Concurrency control and TRAIGER, I. L., GRAY, J. N., GALTIERI, C. A., AND
consistency of multiple copies in distributed LINDSAY, B. G. 2982. Transactions and consist-
INGRES. IEEE Trans. Softw. Eng. SE-5, 3 ency in distributed database systems. ACM
(May), 188-194. Trans. Database Syst. 7, 3 (Sept.), 323-342.

THOMAS, R. H. 1979. A majority consensus ap- WRIGHT, D. D. 1983. Managing distributed data-
preach to concurrency control. ACM Trans. bases in partitioned networks. TR83-572, Dept.
Database Syst. 4, 2 (June), 180-209. of Computer Science, Cornell Univ., Ithaca, N.Y.

(Sept.).

Received March 1985; revised October 1985; final revision accepted December 1985.

Computing Surveys, Vol. 17, No. 3, September 1985

